top
The postulation of Aritméticamente Cohen-Macaulay (ACM) subschemes of the projective space PkN is well known in the case of codimension 2. There are many different ways of recording this numerical information: numerical character of Gruson/Peskine, h-vector, postulation character of Martin-Deschamps/Perrin... The first aim of this paper is to show the equivalence of these notions. The second and most important aim, is to study the postulation of codimension 3 ACM subschemes of PN. We use a result by Macaulay which describes all the Hilbert functions of the quotients of a polynomial ring. By iterating the number of variables, we obtain a new form of the growth of these functions.
Martin-Deschamps, Mireille. "Caractères numériques et fonctions de Macaulay.." Collectanea Mathematica 55.3 (2004): 289-314. <http://eudml.org/doc/44347>.
@article{Martin2004, author = {Martin-Deschamps, Mireille}, journal = {Collectanea Mathematica}, keywords = {Projective space; Codimension:Subschemes}, language = {fre}, number = {3}, pages = {289-314}, title = {Caractères numériques et fonctions de Macaulay.}, url = {http://eudml.org/doc/44347}, volume = {55}, year = {2004}, }
TY - JOUR AU - Martin-Deschamps, Mireille TI - Caractères numériques et fonctions de Macaulay. JO - Collectanea Mathematica PY - 2004 VL - 55 IS - 3 SP - 289 EP - 314 LA - fre KW - Projective space; Codimension:Subschemes UR - http://eudml.org/doc/44347 ER -