Small vertical vibrations of strings with moving ends.
Tania Nunes Rabello; María Cristina Campos Vieira; Cicero Lopes Frota; Luis Adauto Medeiros
Revista Matemática Complutense (2003)
- Volume: 16, Issue: 1, page 179-206
- ISSN: 1139-1138
Access Full Article
topAbstract
topHow to cite
topNunes Rabello, Tania, et al. "Small vertical vibrations of strings with moving ends.." Revista Matemática Complutense 16.1 (2003): 179-206. <http://eudml.org/doc/44349>.
@article{NunesRabello2003,
abstract = {In this work we investigate a mathematical model for small vertical vibrations of a stretched string when the ends vary with the time t and the cross sections of the string is variable and the density of the material is also variable, that is, p=p(x). It contains Kirchhoff model for fixed ends. We obtain solutions by Galerkin method and estimates in Sobolev spaces.},
author = {Nunes Rabello, Tania, Campos Vieira, María Cristina, Lopes Frota, Cicero, Adauto Medeiros, Luis},
journal = {Revista Matemática Complutense},
keywords = {Mecánica del sólido deformable; Vibraciones; Ecuaciones diferenciales hiperbólicas; Métodos de Galerkin; Espacios de Sobolev; existence; Galerkin method; Sobolev spaces},
language = {eng},
number = {1},
pages = {179-206},
title = {Small vertical vibrations of strings with moving ends.},
url = {http://eudml.org/doc/44349},
volume = {16},
year = {2003},
}
TY - JOUR
AU - Nunes Rabello, Tania
AU - Campos Vieira, María Cristina
AU - Lopes Frota, Cicero
AU - Adauto Medeiros, Luis
TI - Small vertical vibrations of strings with moving ends.
JO - Revista Matemática Complutense
PY - 2003
VL - 16
IS - 1
SP - 179
EP - 206
AB - In this work we investigate a mathematical model for small vertical vibrations of a stretched string when the ends vary with the time t and the cross sections of the string is variable and the density of the material is also variable, that is, p=p(x). It contains Kirchhoff model for fixed ends. We obtain solutions by Galerkin method and estimates in Sobolev spaces.
LA - eng
KW - Mecánica del sólido deformable; Vibraciones; Ecuaciones diferenciales hiperbólicas; Métodos de Galerkin; Espacios de Sobolev; existence; Galerkin method; Sobolev spaces
UR - http://eudml.org/doc/44349
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.