Extension and splitting theorems for Fréchet spaces of type 2.
A. Defant; P. Domanski; M. Mastylo
Revista Matemática Complutense (1999)
- Volume: 12, Issue: 2, page 325-337
- ISSN: 1139-1138
Access Full Article
topAbstract
topHow to cite
topDefant, A., Domanski, P., and Mastylo, M.. "Extension and splitting theorems for Fréchet spaces of type 2.." Revista Matemática Complutense 12.2 (1999): 325-337. <http://eudml.org/doc/44415>.
@article{Defant1999,
abstract = {We prove the following common generalization of Maurey's extension theorem and Vogt's (DN)-(Omega) splitting theorem for Fréchet spaces: if T is an operator from a subspace E of a Fréchet space G of type 2 to a Fréchet space F of dual type 2, then T extends to a map from G into F'' whenever G/E satisfies (DN) and F satisfies (Omega).},
author = {Defant, A., Domanski, P., Mastylo, M.},
journal = {Revista Matemática Complutense},
keywords = {Espacios de Banach; Espacios de Frechet; Seminormas; splitting theorem; Fréchet spaces; type and cotype; hilbertizable space; projective limit of Hilbert spaces; property ; hilbertizable Fréchet subspace},
language = {eng},
number = {2},
pages = {325-337},
title = {Extension and splitting theorems for Fréchet spaces of type 2.},
url = {http://eudml.org/doc/44415},
volume = {12},
year = {1999},
}
TY - JOUR
AU - Defant, A.
AU - Domanski, P.
AU - Mastylo, M.
TI - Extension and splitting theorems for Fréchet spaces of type 2.
JO - Revista Matemática Complutense
PY - 1999
VL - 12
IS - 2
SP - 325
EP - 337
AB - We prove the following common generalization of Maurey's extension theorem and Vogt's (DN)-(Omega) splitting theorem for Fréchet spaces: if T is an operator from a subspace E of a Fréchet space G of type 2 to a Fréchet space F of dual type 2, then T extends to a map from G into F'' whenever G/E satisfies (DN) and F satisfies (Omega).
LA - eng
KW - Espacios de Banach; Espacios de Frechet; Seminormas; splitting theorem; Fréchet spaces; type and cotype; hilbertizable space; projective limit of Hilbert spaces; property ; hilbertizable Fréchet subspace
UR - http://eudml.org/doc/44415
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.