# Extension and splitting theorems for Fréchet spaces of type 2.

A. Defant; P. Domanski; M. Mastylo

Revista Matemática Complutense (1999)

- Volume: 12, Issue: 2, page 325-337
- ISSN: 1139-1138

## Access Full Article

top## Abstract

top## How to cite

topDefant, A., Domanski, P., and Mastylo, M.. "Extension and splitting theorems for Fréchet spaces of type 2.." Revista Matemática Complutense 12.2 (1999): 325-337. <http://eudml.org/doc/44415>.

@article{Defant1999,

abstract = {We prove the following common generalization of Maurey's extension theorem and Vogt's (DN)-(Omega) splitting theorem for Fréchet spaces: if T is an operator from a subspace E of a Fréchet space G of type 2 to a Fréchet space F of dual type 2, then T extends to a map from G into F'' whenever G/E satisfies (DN) and F satisfies (Omega).},

author = {Defant, A., Domanski, P., Mastylo, M.},

journal = {Revista Matemática Complutense},

keywords = {Espacios de Banach; Espacios de Frechet; Seminormas; splitting theorem; Fréchet spaces; type and cotype; hilbertizable space; projective limit of Hilbert spaces; property ; hilbertizable Fréchet subspace},

language = {eng},

number = {2},

pages = {325-337},

title = {Extension and splitting theorems for Fréchet spaces of type 2.},

url = {http://eudml.org/doc/44415},

volume = {12},

year = {1999},

}

TY - JOUR

AU - Defant, A.

AU - Domanski, P.

AU - Mastylo, M.

TI - Extension and splitting theorems for Fréchet spaces of type 2.

JO - Revista Matemática Complutense

PY - 1999

VL - 12

IS - 2

SP - 325

EP - 337

AB - We prove the following common generalization of Maurey's extension theorem and Vogt's (DN)-(Omega) splitting theorem for Fréchet spaces: if T is an operator from a subspace E of a Fréchet space G of type 2 to a Fréchet space F of dual type 2, then T extends to a map from G into F'' whenever G/E satisfies (DN) and F satisfies (Omega).

LA - eng

KW - Espacios de Banach; Espacios de Frechet; Seminormas; splitting theorem; Fréchet spaces; type and cotype; hilbertizable space; projective limit of Hilbert spaces; property ; hilbertizable Fréchet subspace

UR - http://eudml.org/doc/44415

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.