Metric theory of semialgebraic curves.

Lev Birbrair; Alexandre C. G. Fernandes

Revista Matemática Complutense (2000)

  • Volume: 13, Issue: 2, page 369-382
  • ISSN: 1139-1138

Abstract

top
We present a complete bi-Lipschitz classification of germs of semialgebraic curves (semialgebraic sets of the dimension one). For this purpose we introduce the so-called Hölder Semicomplex, a bi-Lipschitz invariant. Hölder Semicomplex is the collection of all first exponents of Newton-Puiseux expansions, for all pairs of branches of a curve. We prove that two germs of curves are bi-Lipschitz equivalent if and only if the corresponding Hölder Semicomplexes are isomorphic. We also prove that any Hölder Semicomplex can be realized as a germ of some plane semialgebraic curve. Finally, we compare these Hölder Semicomplexes with Hölder Complexes-complete bi-Lipschitz invariant of two-dimensional semialgebraic sets.

How to cite

top

Birbrair, Lev, and Fernandes, Alexandre C. G.. "Teoría métrica de curvas semialgebráicas.." Revista Matemática Complutense 13.2 (2000): 369-382. <http://eudml.org/doc/44492>.

@article{Birbrair2000,
author = {Birbrair, Lev, Fernandes, Alexandre C. G.},
journal = {Revista Matemática Complutense},
keywords = {Curvas algebraicas; Subálgebras; Subespacio invariante; Espacios de Holder generalizados; Métrica; Gérmenes de funciones; singularity; Newton-Puiseux expansion; bi-Lipschitz classification; germs of semialgebraic curves; Hölder semicomplex},
language = {spa},
number = {2},
pages = {369-382},
title = {Teoría métrica de curvas semialgebráicas.},
url = {http://eudml.org/doc/44492},
volume = {13},
year = {2000},
}

TY - JOUR
AU - Birbrair, Lev
AU - Fernandes, Alexandre C. G.
TI - Teoría métrica de curvas semialgebráicas.
JO - Revista Matemática Complutense
PY - 2000
VL - 13
IS - 2
SP - 369
EP - 382
LA - spa
KW - Curvas algebraicas; Subálgebras; Subespacio invariante; Espacios de Holder generalizados; Métrica; Gérmenes de funciones; singularity; Newton-Puiseux expansion; bi-Lipschitz classification; germs of semialgebraic curves; Hölder semicomplex
UR - http://eudml.org/doc/44492
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.