# A symmetrization result for nonlinear elliptic equations.

Vincenzo Ferone; Basilio Messano

Revista Matemática Complutense (2004)

- Volume: 17, Issue: 2, page 261-276
- ISSN: 1139-1138

## Access Full Article

top## Abstract

top## How to cite

topFerone, Vincenzo, and Messano, Basilio. "A symmetrization result for nonlinear elliptic equations.." Revista Matemática Complutense 17.2 (2004): 261-276. <http://eudml.org/doc/44527>.

@article{Ferone2004,

abstract = {We consider a solution u of the homogeneous Dirichlet problem for a class of nonlinear elliptic equations in the form A(u) = g(x,u) + f, where the principal term is a Leray-Lions operator defined on W01,p (Ω). The function g(x,u) satisfies suitable growth assumptions, but no sign hypothesis on it is assumed. We prove that the rearrangement of u can be estimated by the solution of a problem whose data are radially symmetric.},

author = {Ferone, Vincenzo, Messano, Basilio},

journal = {Revista Matemática Complutense},

keywords = {Ecuaciones diferenciales elípticas; Ecuaciones en derivadas parciales no lineales; Problemas de valor de frontera; Problema de Dirichlet},

language = {eng},

number = {2},

pages = {261-276},

title = {A symmetrization result for nonlinear elliptic equations.},

url = {http://eudml.org/doc/44527},

volume = {17},

year = {2004},

}

TY - JOUR

AU - Ferone, Vincenzo

AU - Messano, Basilio

TI - A symmetrization result for nonlinear elliptic equations.

JO - Revista Matemática Complutense

PY - 2004

VL - 17

IS - 2

SP - 261

EP - 276

AB - We consider a solution u of the homogeneous Dirichlet problem for a class of nonlinear elliptic equations in the form A(u) = g(x,u) + f, where the principal term is a Leray-Lions operator defined on W01,p (Ω). The function g(x,u) satisfies suitable growth assumptions, but no sign hypothesis on it is assumed. We prove that the rearrangement of u can be estimated by the solution of a problem whose data are radially symmetric.

LA - eng

KW - Ecuaciones diferenciales elípticas; Ecuaciones en derivadas parciales no lineales; Problemas de valor de frontera; Problema de Dirichlet

UR - http://eudml.org/doc/44527

ER -

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.