The critical exponent of the Arshon words
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 44, Issue: 1, page 139-150
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topKrieger, Dalia. "The critical exponent of the Arshon words." RAIRO - Theoretical Informatics and Applications 44.1 (2010): 139-150. <http://eudml.org/doc/250792>.
@article{Krieger2010,
abstract = {
Generalizing the results of Thue (for n = 2) [Norske Vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67] and of Klepinin and Sukhanov (for n = 3) [Discrete Appl. Math. 114 (2001) 155–169], we prove
that for all n ≥ 2, the critical exponent of the Arshon word of order n is given by (3n–2)/(2n–2), and this exponent is attained at position 1.
},
author = {Krieger, Dalia},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Arshon words; critical exponent.; critical exponent},
language = {eng},
month = {2},
number = {1},
pages = {139-150},
publisher = {EDP Sciences},
title = {The critical exponent of the Arshon words},
url = {http://eudml.org/doc/250792},
volume = {44},
year = {2010},
}
TY - JOUR
AU - Krieger, Dalia
TI - The critical exponent of the Arshon words
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/2//
PB - EDP Sciences
VL - 44
IS - 1
SP - 139
EP - 150
AB -
Generalizing the results of Thue (for n = 2) [Norske Vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67] and of Klepinin and Sukhanov (for n = 3) [Discrete Appl. Math. 114 (2001) 155–169], we prove
that for all n ≥ 2, the critical exponent of the Arshon word of order n is given by (3n–2)/(2n–2), and this exponent is attained at position 1.
LA - eng
KW - Arshon words; critical exponent.; critical exponent
UR - http://eudml.org/doc/250792
ER -
References
top- S.E. Arshon, A proof of the existence of infinite asymmetric sequences on n symbols. Matematicheskoe Prosveshchenie (Mathematical Education)2 (1935) 24–33 (in Russian). Available electronically at . URIhttp://ilib.mccme.ru/djvu/mp1/mp1-2.htm
- S.E. Arshon, A proof of the existence of infinite asymmetric sequences on n symbols. Mat. Sb.2 (1937) 769–779 (in Russian, with French abstract).
- J. Berstel, Mots sans carré et morphismes itérés. Discrete Math.29 (1979) 235–244.
- J. Berstel, Axel Thue's papers on repetitions in words: a translation. Publications du Laboratoire de Combinatoire et d'Informatique Mathématique 20, Université du Québec à Montréal (1995).
- J.D. Currie, No iterated morphism generates any Arshon sequence of odd order. Discrete Math.259 (2002) 277–283.
- S. Kitaev, Symbolic sequences, crucial words and iterations of a morphism. Ph.D. thesis, Göteborg, Sweden (2000).
- S. Kitaev, There are no iterative morphisms that define the Arshon sequence and the σ-sequence. J. Autom. Lang. Comb.8 (2003) 43–50.
- A.V. Klepinin and E.V. Sukhanov, On combinatorial properties of the Arshon sequence. Discrete Appl. Math.114 (2001) 155–169.
- P. Séébold, About some overlap-free morphisms on a n-letter alphabet. J. Autom. Lang. Comb.7 (2002) 579–597.
- P. Séébold, On some generalizations of the Thue–Morse morphism. Theoret. Comput. Sci.292 (2003) 283–298.
- A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. Mat. Nat. Kl.1 (1912) 1–67.
- N.Ya. Vilenkin, Formulas on cardboard. Priroda6 (1991) 95–104 (in Russian). English summary available at , review no. MR1143732. URIhttp://www.ams.org/mathscinet/index.html
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.