Optimally stable fifth-order integration methods: A numerical approach.
International Journal of Mathematics and Mathematical Sciences (1978)
- Volume: 1, page 319-334
- ISSN: 0161-1712
Access Full Article
topHow to cite
topRodabaugh, D.J., and Thompson, S.. "Optimally stable fifth-order integration methods: A numerical approach.." International Journal of Mathematics and Mathematical Sciences 1 (1978): 319-334. <http://eudml.org/doc/44818>.
@article{Rodabaugh1978,
author = {Rodabaugh, D.J., Thompson, S.},
journal = {International Journal of Mathematics and Mathematical Sciences},
keywords = {ordinary differential equations; initial value problems; multistep formulas; relative stability},
language = {eng},
pages = {319-334},
publisher = {Hindawi Publishing Corporation, New York},
title = {Optimally stable fifth-order integration methods: A numerical approach.},
url = {http://eudml.org/doc/44818},
volume = {1},
year = {1978},
}
TY - JOUR
AU - Rodabaugh, D.J.
AU - Thompson, S.
TI - Optimally stable fifth-order integration methods: A numerical approach.
JO - International Journal of Mathematics and Mathematical Sciences
PY - 1978
PB - Hindawi Publishing Corporation, New York
VL - 1
SP - 319
EP - 334
LA - eng
KW - ordinary differential equations; initial value problems; multistep formulas; relative stability
UR - http://eudml.org/doc/44818
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.