# Convergence conditions for interpolation fractions at the nodes distinct from the singular points of a function.

Sibirskij Matematicheskij Zhurnal (2005)

- Volume: 46, Issue: 4, page 822-833
- ISSN: 0037-4474

## Access Full Article

top## How to cite

topLipchinskij, A.G.. "Convergence conditions for interpolation fractions at the nodes distinct from the singular points of a function.." Sibirskij Matematicheskij Zhurnal 46.4 (2005): 822-833. <http://eudml.org/doc/53161>.

@article{Lipchinskij2005,

author = {Lipchinskij, A.G.},

journal = {Sibirskij Matematicheskij Zhurnal},

keywords = {analytic function; rational fraction; uniform convergence; divergence; singular point of a function; interpolation process},

language = {eng},

number = {4},

pages = {822-833},

publisher = {Sibirskoe Otdelenie Rossijskoj Akademii Nauk, Institut Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk; Izdatel'stvo Instituta Matematiki},

title = {Convergence conditions for interpolation fractions at the nodes distinct from the singular points of a function.},

url = {http://eudml.org/doc/53161},

volume = {46},

year = {2005},

}

TY - JOUR

AU - Lipchinskij, A.G.

TI - Convergence conditions for interpolation fractions at the nodes distinct from the singular points of a function.

JO - Sibirskij Matematicheskij Zhurnal

PY - 2005

PB - Sibirskoe Otdelenie Rossijskoj Akademii Nauk, Institut Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk; Izdatel'stvo Instituta Matematiki

VL - 46

IS - 4

SP - 822

EP - 833

LA - eng

KW - analytic function; rational fraction; uniform convergence; divergence; singular point of a function; interpolation process

UR - http://eudml.org/doc/53161

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.