Convergence conditions for interpolation fractions at the nodes distinct from the singular points of a function.
Sibirskij Matematicheskij Zhurnal (2005)
- Volume: 46, Issue: 4, page 822-833
- ISSN: 0037-4474
Access Full Article
topHow to cite
topLipchinskij, A.G.. "Convergence conditions for interpolation fractions at the nodes distinct from the singular points of a function.." Sibirskij Matematicheskij Zhurnal 46.4 (2005): 822-833. <http://eudml.org/doc/53161>.
@article{Lipchinskij2005,
author = {Lipchinskij, A.G.},
journal = {Sibirskij Matematicheskij Zhurnal},
keywords = {analytic function; rational fraction; uniform convergence; divergence; singular point of a function; interpolation process},
language = {eng},
number = {4},
pages = {822-833},
publisher = {Sibirskoe Otdelenie Rossijskoj Akademii Nauk, Institut Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk; Izdatel'stvo Instituta Matematiki},
title = {Convergence conditions for interpolation fractions at the nodes distinct from the singular points of a function.},
url = {http://eudml.org/doc/53161},
volume = {46},
year = {2005},
}
TY - JOUR
AU - Lipchinskij, A.G.
TI - Convergence conditions for interpolation fractions at the nodes distinct from the singular points of a function.
JO - Sibirskij Matematicheskij Zhurnal
PY - 2005
PB - Sibirskoe Otdelenie Rossijskoj Akademii Nauk, Institut Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk; Izdatel'stvo Instituta Matematiki
VL - 46
IS - 4
SP - 822
EP - 833
LA - eng
KW - analytic function; rational fraction; uniform convergence; divergence; singular point of a function; interpolation process
UR - http://eudml.org/doc/53161
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.