Boundedness and compactness of Volterra type integral operators.

Ojnarov, Ruskul

Sibirskij Matematicheskij Zhurnal (2007)

  • Volume: 48, Issue: 5, page 1100-1115
  • ISSN: 0037-4474

How to cite

top

Ojnarov, Ruskul. "Boundedness and compactness of Volterra type integral operators.." Sibirskij Matematicheskij Zhurnal 48.5 (2007): 1100-1115. <http://eudml.org/doc/55692>.

@article{Ojnarov2007,
author = {Ojnarov, Ruskul},
journal = {Sibirskij Matematicheskij Zhurnal},
keywords = {integral operator; Volterra type integral operator; operator of fractional integration; boundedness; compactness},
language = {eng},
number = {5},
pages = {1100-1115},
publisher = {Sibirskoe Otdelenie Rossijskoj Akademii Nauk, Institut Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk; Izdatel'stvo Instituta Matematiki},
title = {Boundedness and compactness of Volterra type integral operators.},
url = {http://eudml.org/doc/55692},
volume = {48},
year = {2007},
}

TY - JOUR
AU - Ojnarov, Ruskul
TI - Boundedness and compactness of Volterra type integral operators.
JO - Sibirskij Matematicheskij Zhurnal
PY - 2007
PB - Sibirskoe Otdelenie Rossijskoj Akademii Nauk, Institut Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk; Izdatel'stvo Instituta Matematiki
VL - 48
IS - 5
SP - 1100
EP - 1115
LA - eng
KW - integral operator; Volterra type integral operator; operator of fractional integration; boundedness; compactness
UR - http://eudml.org/doc/55692
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.