Approximation of values of hypergeometric functions by restricted rationals

Carsten Elsner[1]; Takao Komatsu[2]; Iekata Shiokawa[3]

  • [1] FHDW Hannover, University of Applied Sciences Freundallee 15 D-30173 Hannover, Germany
  • [2] Faculty of Science and Technology Hirosaki University Hirosaki, 036-8561, Japan
  • [3] Department of Mathematics Keio University Hiyoshi 3-14-1 Yokohama, 223-8522, Japan

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 2, page 393-404
  • ISSN: 1246-7405

Abstract

top
We compute upper and lower bounds for the approximation of hyperbolic functions at points 1 / s ( s = 1 , 2 , ) by rationals x / y , such that x , y satisfy a quadratic equation. For instance, all positive integers x , y with y 0 ( mod 2 ) solving the Pythagorean equation x 2 + y 2 = z 2 satisfy | y sinh ( 1 / s ) - x | log log y log y . Conversely, for every s = 1 , 2 , there are infinitely many coprime integers x , y , such that | y sinh ( 1 / s ) - x | log log y log y and x 2 + y 2 = z 2 hold simultaneously for some integer z . A generalization to the approximation of h ( e 1 / s ) for rational functions h ( t ) is included.

How to cite

top

Elsner, Carsten, Komatsu, Takao, and Shiokawa, Iekata. "Approximation of values of hypergeometric functions by restricted rationals." Journal de Théorie des Nombres de Bordeaux 19.2 (2007): 393-404. <http://eudml.org/doc/249954>.

@article{Elsner2007,
abstract = {We compute upper and lower bounds for the approximation of hyperbolic functions at points $1/s $$(s=1,2,\dots ) $ by rationals $x/y $, such that $x, y $ satisfy a quadratic equation. For instance, all positive integers $x,y $ with $y\equiv 0\hspace\{4.44443pt\}(\@mod \; 2) $ solving the Pythagorean equation $x^2 + y^2 = z^2 $ satisfy\[|y\sinh (1/s) - x| \,\gg \frac\{\log \log y\}\{\log y\} \,\,.\]Conversely, for every $s=1,2,\dots $ there are infinitely many coprime integers $x,y $, such that\[|y\sinh (1/s) - x| \,\ll \frac\{\log \log y\}\{\log y\} \]and $x^2 + y^2 = z^2 $ hold simultaneously for some integer $z$. A generalization to the approximation of $h(e^\{1/s\}) $ for rational functions $h(t) $ is included.},
affiliation = {FHDW Hannover, University of Applied Sciences Freundallee 15 D-30173 Hannover, Germany; Faculty of Science and Technology Hirosaki University Hirosaki, 036-8561, Japan; Department of Mathematics Keio University Hiyoshi 3-14-1 Yokohama, 223-8522, Japan},
author = {Elsner, Carsten, Komatsu, Takao, Shiokawa, Iekata},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {irrationality measure; hypergeometric function},
language = {eng},
number = {2},
pages = {393-404},
publisher = {Université Bordeaux 1},
title = {Approximation of values of hypergeometric functions by restricted rationals},
url = {http://eudml.org/doc/249954},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Elsner, Carsten
AU - Komatsu, Takao
AU - Shiokawa, Iekata
TI - Approximation of values of hypergeometric functions by restricted rationals
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 2
SP - 393
EP - 404
AB - We compute upper and lower bounds for the approximation of hyperbolic functions at points $1/s $$(s=1,2,\dots ) $ by rationals $x/y $, such that $x, y $ satisfy a quadratic equation. For instance, all positive integers $x,y $ with $y\equiv 0\hspace{4.44443pt}(\@mod \; 2) $ solving the Pythagorean equation $x^2 + y^2 = z^2 $ satisfy\[|y\sinh (1/s) - x| \,\gg \frac{\log \log y}{\log y} \,\,.\]Conversely, for every $s=1,2,\dots $ there are infinitely many coprime integers $x,y $, such that\[|y\sinh (1/s) - x| \,\ll \frac{\log \log y}{\log y} \]and $x^2 + y^2 = z^2 $ hold simultaneously for some integer $z$. A generalization to the approximation of $h(e^{1/s}) $ for rational functions $h(t) $ is included.
LA - eng
KW - irrationality measure; hypergeometric function
UR - http://eudml.org/doc/249954
ER -

References

top
  1. C. Elsner, On arithmetic properties of the convergents of Euler’s number. Colloq. Math. 79 (1999), 133–145. Zbl0930.11048
  2. C. Elsner, On rational approximations by Pythagorean numbers. Fibonacci Quart. 41 (2003), 98–104. Zbl1028.11042MR1990517
  3. G.H. Hardy and E.M. Wright, An introduction to the theory of numbers. Fifth edition, Clarendon Press, Oxford, 1979. Zbl0020.29201MR568909
  4. A. Khintchine, Kettenbrüche. B.G.Teubner Verlagsgesellschaft, 1956. MR80630
  5. T. Komatsu, Arithmetical properties of the leaping convergents of e 1 / s . Tokyo J. Math. 27 (2004), 1–12. Zbl1075.11004MR2060069
  6. L. J. Mordell, Diophantine equations. Academic Press, London and New York, 1969. Zbl0188.34503MR249355
  7. O. Perron, Die Lehre von den Kettenbrüchen. Chelsea, New York, 1950. Zbl0041.18206MR37384

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.