О многообразиях, порожденных свободными алгебрами типа (-1,1) конечного ранга.

С.В. Пчелинцев

Sibirskij matematiceskij zurnal (1987)

  • Volume: 28, Issue: 2, page 149-158
  • ISSN: 0037-4466; 1573-9260/e

How to cite

top

Пчелинцев, С.В.. "О многообразиях, порожденных свободными алгебрами типа (-1,1) конечного ранга.." Sibirskij matematiceskij zurnal 28.2 (1987): 149-158. <http://eudml.org/doc/62823>.

@article{Пчелинцев1987,
author = {Пчелинцев, С.В.},
journal = {Sibirskij matematiceskij zurnal},
keywords = {basic rank of variety; central function; variety of (-1,1)-algebras; free algebra; finite basis of identities},
language = {rus},
number = {2},
pages = {149-158},
publisher = {Izd. AN SSSR},
title = {О многообразиях, порожденных свободными алгебрами типа (-1,1) конечного ранга.},
url = {http://eudml.org/doc/62823},
volume = {28},
year = {1987},
}

TY - JOUR
AU - Пчелинцев, С.В.
TI - О многообразиях, порожденных свободными алгебрами типа (-1,1) конечного ранга.
JO - Sibirskij matematiceskij zurnal
PY - 1987
PB - Izd. AN SSSR
VL - 28
IS - 2
SP - 149
EP - 158
LA - rus
KW - basic rank of variety; central function; variety of (-1,1)-algebras; free algebra; finite basis of identities
UR - http://eudml.org/doc/62823
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.