A lower bound for P ( x 4 + 1 )

Marina Mureddu

Annales de la Faculté des sciences de Toulouse : Mathématiques (1986-1987)

  • Volume: 8, Issue: 2, page 109-119
  • ISSN: 0240-2963

How to cite

top

Mureddu, Marina. "A lower bound for $P(x^4 +1)$." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.2 (1986-1987): 109-119. <http://eudml.org/doc/72606>.

@article{Mureddu1986-1987,
author = {Mureddu, Marina},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {greatest prime factor of integers; prime factors of ; prime factor of polynomials; Pell equations; algorithm},
language = {eng},
number = {2},
pages = {109-119},
publisher = {UNIVERSITE PAUL SABATIER},
title = {A lower bound for $P(x^4 +1)$},
url = {http://eudml.org/doc/72606},
volume = {8},
year = {1986-1987},
}

TY - JOUR
AU - Mureddu, Marina
TI - A lower bound for $P(x^4 +1)$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1986-1987
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 2
SP - 109
EP - 119
LA - eng
KW - greatest prime factor of integers; prime factors of ; prime factor of polynomials; Pell equations; algorithm
UR - http://eudml.org/doc/72606
ER -

References

top
  1. [1] Borevitch ( S.I.) and Schafarevitch ( I.R.).— Théorie des Nombres.- Paris, Gauthier-Villars, 1967. Zbl0145.04901MR205908
  2. [2] Cerlienco ( L.), Mignotte ( M.) and Piras ( F.). — Suites Récurrentes Linéaires. Strasbourg, Publication de l'I.R.M.A., 1984. 
  3. [3] Hardy ( G.H.) and Wright ( B.M.).— An Introduction of the Theory of Numbers. Oxford, Claredon Press, 1979. Zbl0423.10001MR568909
  4. [4] Mignotte ( M.).— P(x2 + 1) ≥ 17 si x ≥ 240. — C.R. Acad. Sc. t.301, series I, n°13, 1985. Zbl0591.10006MR817275
  5. [5] Lucas ( E.). - Théorie des Nombres. - Paris, Gauthier-Villars, 1891. JFM23.0174.02
  6. [6] Niven ( I.) and Zuckerman ( H.S.). — An Introduction to the Theory of Numbers. New York, John Wiley & Sons, 1960. Zbl0098.03602
  7. [7] Pethö ( A.) and De Weger ( B.M.M.).— Products of prime Powers in Binary Recurrences Sequences, Mathematical Institute University of Leiden. The Netherlands, Report n.24, September 1985; Report n.29, November 1985. 
  8. [8] Størmer ( C.).- Quelques Théorèmes sur l'équation de Pell x2 - Dy2 = ±1 et leurs applications,. — Vid.-Selsk. Skrifter. Math. Naturv. K1, 1897. JFM28.0192.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.