Générateur des semi-groupes non linéaires et la formule de Lie-Trotter

Philippe Bénilan; Samir Ismail

Annales de la Faculté des sciences de Toulouse : Mathématiques (1985)

  • Volume: 7, Issue: 2, page 151-160
  • ISSN: 0240-2963

How to cite

top

Bénilan, Philippe, and Ismail, Samir. "Générateur des semi-groupes non linéaires et la formule de Lie-Trotter." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.2 (1985): 151-160. <http://eudml.org/doc/73174>.

@article{Bénilan1985,
author = {Bénilan, Philippe, Ismail, Samir},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {continuous semi-group of nonlinear contractions on a Banach space; graph infinitesimal generator; m-accretive operator; Lie-Trotter formula},
language = {fre},
number = {2},
pages = {151-160},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Générateur des semi-groupes non linéaires et la formule de Lie-Trotter},
url = {http://eudml.org/doc/73174},
volume = {7},
year = {1985},
}

TY - JOUR
AU - Bénilan, Philippe
AU - Ismail, Samir
TI - Générateur des semi-groupes non linéaires et la formule de Lie-Trotter
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1985
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 2
SP - 151
EP - 160
LA - fre
KW - continuous semi-group of nonlinear contractions on a Banach space; graph infinitesimal generator; m-accretive operator; Lie-Trotter formula
UR - http://eudml.org/doc/73174
ER -

References

top
  1. [1] Barbu V.«Nonlinear semigroups and differential equations in Banach spaces». Noordhoff International Publishing, 1976. Zbl0328.47035MR390843
  2. [2] Benilan Ph.«Equations d'évolution dans un espace de Banach quelconque et applications». Thèse, Orsay, 1972. 
  3. [3] Benilan Ph.«Evolution equations and accretive operators». Lecture notes, Spring1981, University of Kentucky, Lexington. 
  4. [4] Benilan Ph., Crandall M.C., Pazy A.«Evolution equations governed by accretive operator». Livre à paraître. 
  5. [5] Brezis H., Pazy A.«Convergence and approximation of semigroups of nonlinear operators in Banach spaces». J. Funct. Ana.9,1972, 63-74. Zbl0231.47036MR293452
  6. [6] Crandall M.C., Liggett T.«Generation of semigroups of nonlinear transformations on general Banach spaces». Amer. J. Math.93, 1971, 265-298. Zbl0226.47038MR287357
  7. [7] Crandall M.C., Liggett T.«A theorem and a counterexemple in the theory of semigroups of nonlinear transformations». Trans. of the Amer. Math. Soc., vol 160, 1971, 263-278. Zbl0226.47037MR301592
  8. [8] Kobayashi Y.«Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups». J. Math., Soc. Japan, vol. 27, n° 4, 1975. Zbl0313.34068MR399974
  9. [9] Reich S.«Product formulas, nonlinear semigroups and accretive operators». J. Funct Ana.36,1980,147-168. Zbl0437.47048MR569251
  10. [10] Brezis H.«Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert». Amsterdam, North-Holland Publ. Co, 1973. Zbl0252.47055MR348562

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.