Une classe d'équations cubiques

Philippe Revoy

Annales de la Faculté des sciences de Toulouse : Mathématiques (1985)

  • Volume: 7, Issue: 3-4, page 179-184
  • ISSN: 0240-2963

How to cite

top

Revoy, Philippe. "Une classe d'équations cubiques." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.3-4 (1985): 179-184. <http://eudml.org/doc/73178>.

@article{Revoy1985,
author = {Revoy, Philippe},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {elliptic curves; cubic diophantine equation; descent; rational points},
language = {fre},
number = {3-4},
pages = {179-184},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Une classe d'équations cubiques},
url = {http://eudml.org/doc/73178},
volume = {7},
year = {1985},
}

TY - JOUR
AU - Revoy, Philippe
TI - Une classe d'équations cubiques
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1985
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 3-4
SP - 179
EP - 184
LA - fre
KW - elliptic curves; cubic diophantine equation; descent; rational points
UR - http://eudml.org/doc/73178
ER -

References

top
  1. [1] J.W.S. Cassels. «On a diophantine equation». Acta Arith.6 (1960) p. 47-51. Zbl0094.25701MR115974
  2. [2] J.W.S. Cassels. «Diophantine equations with special reference to elliptic curves». Journal of London Math. Soc.. 41 (1966) p. 193-291. Zbl0138.27002MR199150
  3. [3] A. Hurwitz. «Ueber ternare diophantische Gleichungen dritten Grades». Viertel jahrschrift Naturf. Ges. Zurich62 (1917) p. 207-229Math. Werke (Birkhaüser Cie, Basel) 2 (1933) p. 446-468. Zbl46.0205.05MR154777JFM46.0205.05
  4. [4] G. Ligozat. «Courbes modulaires de genre 1». Mémoire SMF43 (1975) p. 55 et suiv. Zbl0322.14011MR417060
  5. [5] L.J. Mordell. «The diophantine equations x3 + y3 + z3 + kxyz = 0». «Colloque sur la théorie des Nombres» Bruxelles (1955) p. 67-76. Zbl0072.26805MR78387
  6. [6] L.J. Mordell. «Diophantine Equations». Academic Press. London and New York (1969). Zbl0188.34503MR249355
  7. [7] A. Rubel. In Am. Math. Monthly Vol. 90, 2 (1983) p. 121. 
  8. [8] G. Sansone and J.W.S. Cassels. «Sur le problème de M. Werner Mnich». Acta Arith.. 7 (1962) p. 187-190. Zbl0100.27403MR132713
  9. [9] M. Ward. « The vanishing of the homogeneous product sum of the roots of a cubic». Duke Math. J.26 (1959) p. 553-562. Zbl0093.04701MR110669

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.