Une classe d'équations cubiques
Annales de la Faculté des sciences de Toulouse : Mathématiques (1985)
- Volume: 7, Issue: 3-4, page 179-184
- ISSN: 0240-2963
Access Full Article
topHow to cite
topRevoy, Philippe. "Une classe d'équations cubiques." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.3-4 (1985): 179-184. <http://eudml.org/doc/73178>.
@article{Revoy1985,
author = {Revoy, Philippe},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {elliptic curves; cubic diophantine equation; descent; rational points},
language = {fre},
number = {3-4},
pages = {179-184},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Une classe d'équations cubiques},
url = {http://eudml.org/doc/73178},
volume = {7},
year = {1985},
}
TY - JOUR
AU - Revoy, Philippe
TI - Une classe d'équations cubiques
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1985
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 3-4
SP - 179
EP - 184
LA - fre
KW - elliptic curves; cubic diophantine equation; descent; rational points
UR - http://eudml.org/doc/73178
ER -
References
top- [1] J.W.S. Cassels. «On a diophantine equation». Acta Arith.6 (1960) p. 47-51. Zbl0094.25701MR115974
- [2] J.W.S. Cassels. «Diophantine equations with special reference to elliptic curves». Journal of London Math. Soc.. 41 (1966) p. 193-291. Zbl0138.27002MR199150
- [3] A. Hurwitz. «Ueber ternare diophantische Gleichungen dritten Grades». Viertel jahrschrift Naturf. Ges. Zurich62 (1917) p. 207-229Math. Werke (Birkhaüser Cie, Basel) 2 (1933) p. 446-468. Zbl46.0205.05MR154777JFM46.0205.05
- [4] G. Ligozat. «Courbes modulaires de genre 1». Mémoire SMF43 (1975) p. 55 et suiv. Zbl0322.14011MR417060
- [5] L.J. Mordell. «The diophantine equations x3 + y3 + z3 + kxyz = 0». «Colloque sur la théorie des Nombres» Bruxelles (1955) p. 67-76. Zbl0072.26805MR78387
- [6] L.J. Mordell. «Diophantine Equations». Academic Press. London and New York (1969). Zbl0188.34503MR249355
- [7] A. Rubel. In Am. Math. Monthly Vol. 90, 2 (1983) p. 121.
- [8] G. Sansone and J.W.S. Cassels. «Sur le problème de M. Werner Mnich». Acta Arith.. 7 (1962) p. 187-190. Zbl0100.27403MR132713
- [9] M. Ward. « The vanishing of the homogeneous product sum of the roots of a cubic». Duke Math. J.26 (1959) p. 553-562. Zbl0093.04701MR110669
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.