Sur l'extension des fonctions C R
Annales de la Faculté des sciences de Toulouse : Mathématiques (1985)
- Volume: 7, Issue: 3-4, page 251-289
- ISSN: 0240-2963
Access Full Article
topHow to cite
topMaingot, Stéphane. "Sur l'extension des fonctions C R." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.3-4 (1985): 251-289. <http://eudml.org/doc/73182>.
@article{Maingot1985,
author = {Maingot, Stéphane},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {holomorphic extension; smooth generic CR submanifold},
language = {fre},
number = {3-4},
pages = {251-289},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Sur l'extension des fonctions C R},
url = {http://eudml.org/doc/73182},
volume = {7},
year = {1985},
}
TY - JOUR
AU - Maingot, Stéphane
TI - Sur l'extension des fonctions C R
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1985
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 3-4
SP - 251
EP - 289
LA - fre
KW - holomorphic extension; smooth generic CR submanifold
UR - http://eudml.org/doc/73182
ER -
References
top- [1] M.S. Baouendi et F. Treves. «A property of the functions and distributions annihilated by a locally integrable system of complex vector fields». Ann. of Marh.113 (1981), 387-421. Zbl0491.35036MR607899
- [2] M.S. Baouendi et F. Treves. «About the holomorphic extension of CR functions on real hypersurfaces in complex space». Duke Math. J.51, (1984), 77-107. Zbl0564.32011MR744289
- [3] E. Bishop. «Differentiable manifolds in complex Euclidean space». Duke Math. J., 32 (1965), 1-22. Zbl0154.08501MR200476
- [4] Al Boggess. «CR extendability near a point where the first Leviform vanishes». Duke Math. J.48 (1981), 665-684. Zbl0509.32006MR630590
- [5] Al Boggess et J.C. Polking. «Holomorphic extension of CR functions»Duke Math. J.49 (1982), 757-784. Zbl0506.32003MR683002
- [6] C.D. Hill et G. Taiaini. «Families of analytic disc in n with Boundaries on a prescribed CR-submanifold». Ann. Scoula Norm. Sup. Pisa4-5 (1978), 327-380. Zbl0399.32008MR501906
- [7] L. Hormander. «An introduction to complex analysis in several variables». Van NostrandN.J.1966. Zbl0138.06203MR203075
- [8] H. Lewy. «On the local character of the solutions of an a typical linear differential equation in three variables and a related theorem for regular functions of two complex variables». Ann. of Math. (2) 64 (1956), 514-522. Zbl0074.06204MR81952
- [9] W. Rudin. «Principles of Mathematical analysis 3 rd edition». Mc Graw Hill, (1964). Zbl0148.02903MR166310
- [10] R.O. WELLS, Jr. «On the local holomorphic hull of a real submanifold in several complex variables». Comm. Pure Appl. Math.19 (1966), 145-165. Zbl0142.33901MR197785
- [11] R.O. WELLS, Jr. «Holomorphic hulls and holomorphic convexity of differentiable submanifolds». Trans. Amer. Math. Soc.132 (1968), 245-262. Zbl0159.37702MR222340
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.