Sur les diviseurs premiers des suites récurrentes linéaires

Jean-Paul Bézivin

Annales de la Faculté des sciences de Toulouse : Mathématiques (1986-1987)

  • Volume: 8, Issue: 1, page 61-73
  • ISSN: 0240-2963

How to cite

top

Bézivin, Jean-Paul. "Sur les diviseurs premiers des suites récurrentes linéaires." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.1 (1986-1987): 61-73. <http://eudml.org/doc/73184>.

@article{Bézivin1986-1987,
author = {Bézivin, Jean-Paul},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {lower bounds; linear recurrent sequences; binary sequences; asymptotic formula; number of prime divisors; greatest prime factor; Fourier coefficient; cusp form of weight 12},
language = {fre},
number = {1},
pages = {61-73},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Sur les diviseurs premiers des suites récurrentes linéaires},
url = {http://eudml.org/doc/73184},
volume = {8},
year = {1986-1987},
}

TY - JOUR
AU - Bézivin, Jean-Paul
TI - Sur les diviseurs premiers des suites récurrentes linéaires
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1986-1987
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 1
SP - 61
EP - 73
LA - fre
KW - lower bounds; linear recurrent sequences; binary sequences; asymptotic formula; number of prime divisors; greatest prime factor; Fourier coefficient; cusp form of weight 12
UR - http://eudml.org/doc/73184
ER -

References

top
  1. [1] Lagarias ( J.C.).- The set of prime dividing the Lucas numbers has density 2/3, Pacific Journal of Maths, t. 118, n°2, 1985, p. 449-461. Zbl0569.10003MR789184
  2. [2] Lewis ( D.J.) and Montgomery ( H.L.).- On zeros of p-adic forms, Michigan Math. Journal, t. 30, 1983, p. 83-87. Zbl0531.10026MR694931
  3. [3] Polya ( G.).- Arithmetische Eigenschaften der Reihenentwichlungen rationaler Funktionen, J. Reine Angew. Math., t. 151, 1921, p. 1-31. JFM47.0276.02
  4. [4] Shparlinskii ( I.E.).— On prime divisors of recursive sequences, Izv. Vyssk. Uchebn. Zaved. Math (4), t. 215, 1980, p. 101-103. Zbl0437.10003MR2004674
  5. [5] Stephens ( P.J.).- Prime divisors of second order linear recurrences, I et II, J. Number Theory, t. 8, 1976, p. 313-345. Zbl0334.10018MR417081
  6. [6] Stewart ( C.L.).- On the Greatest prime factor of terms of a linear recurrence sequence, Rocky Mountain J. of Maths., t. 15, n°2, 1985, p. 599-608. Zbl0583.10006MR823271
  7. [7] Stewart ( C.L.).- On divisors of terms of linear recurrent sequences, J. Reine angew Math., t. 333, 1982, p. 12-31. Zbl0475.10009MR660783

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.