On the regular solutions for some classes of Navier-Stokes equations
Annales de la Faculté des sciences de Toulouse : Mathématiques (1988)
- Volume: 9, Issue: 1, page 77-101
- ISSN: 0240-2963
Access Full Article
topHow to cite
topEbihara, Y., and Medeiros, L.A.. "On the regular solutions for some classes of Navier-Stokes equations." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.1 (1988): 77-101. <http://eudml.org/doc/73194>.
@article{Ebihara1988,
author = {Ebihara, Y., Medeiros, L.A.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {existence; uniqueness; regular solutions; incompressible Navier-Stokes equations; decay estimate; Galerkin approximation; perturbation technique; penalization},
language = {eng},
number = {1},
pages = {77-101},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the regular solutions for some classes of Navier-Stokes equations},
url = {http://eudml.org/doc/73194},
volume = {9},
year = {1988},
}
TY - JOUR
AU - Ebihara, Y.
AU - Medeiros, L.A.
TI - On the regular solutions for some classes of Navier-Stokes equations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1988
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 1
SP - 77
EP - 101
LA - eng
KW - existence; uniqueness; regular solutions; incompressible Navier-Stokes equations; decay estimate; Galerkin approximation; perturbation technique; penalization
UR - http://eudml.org/doc/73194
ER -
References
top- [1] Aubin ( J.A.).— Un théorème de compacité, sl Comptes Rendus A. Sc.Paris, Juin 1963, p. 5042-5044. Zbl0195.13002MR152860
- [2] Ebihara ( Y.). - On solutions of semilinear wave equations, Nonlinear Analysis, t. 6, n°5, 1982, p. 467-486. Zbl0487.35063MR661712
- [3] Giga ( Y.).- Weak and strong solutions of the Navier-Stokes initial value Problem, Publ. RIMS, Kyoto Univ., t. 19, 1983, p. 887-910. Zbl0547.35101MR723454
- [4] Leray ( J.).- Essai sur les mouvements plans d'un liquide visqueux qui limitent des parois, J. Math. Pures et Appl., t. 13, 1934, p. 331-418. Zbl60.0727.01JFM60.0727.01
- [5] Lions ( J.L.). - Sur l'existence de solutions des équations de Navier-Stokes, Comptes Rendus A. Sci.Paris, Mai, 1959, p. 2847-2849. Zbl0090.08203MR104930
- [6] Lions ( J.L.) - Prodi ( G.). - Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, Comptes Rendus A. Sci.Paris, Juin, 1959, p. 3519-3521. Zbl0091.42105MR108964
- [7] Lions ( J.L.). - Quelques méthodes de résolution des problèmes aux limites non linéaires.- Dunod, Paris, 1969. Zbl0189.40603MR259693
- [8] Lions ( J.L.). - Some problems connected with the Navier-Stokes equations. - IVELAM, Lima, Peru, 1978.
- [9] Mizohata ( S.).— The theory of partial differential equations.— Cambridge, London, 1973. Zbl0263.35001MR599580
- [10] Rautmann ( R.). — On optimal regularity of Navier-Stokes Solutions at time t = 0, Math. Z., t. 184, 1983, p. 141-149. Zbl0508.35068MR716267
- [11] Serrin ( J.). - The initial value problem for the Navier-Stokes equations - Nonlinear problems, ed. by E. Langer, 1963, p. 69-98. Zbl0115.08502MR150444
- [12] Tartar ( L.).— Topics in nonlinear analysis.— Univ. Paris Sud, Orsay, France, 1978. Zbl0395.00008MR532371
- [13] Temam ( R.).— Navier-Stokes equations - theory and numerical analysis.— North Holland , N.Y.1979. Zbl0426.35003MR603444
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.