On the regular solutions for some classes of Navier-Stokes equations

Y. Ebihara; L.A. Medeiros

Annales de la Faculté des sciences de Toulouse : Mathématiques (1988)

  • Volume: 9, Issue: 1, page 77-101
  • ISSN: 0240-2963

How to cite

top

Ebihara, Y., and Medeiros, L.A.. "On the regular solutions for some classes of Navier-Stokes equations." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.1 (1988): 77-101. <http://eudml.org/doc/73194>.

@article{Ebihara1988,
author = {Ebihara, Y., Medeiros, L.A.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {existence; uniqueness; regular solutions; incompressible Navier-Stokes equations; decay estimate; Galerkin approximation; perturbation technique; penalization},
language = {eng},
number = {1},
pages = {77-101},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the regular solutions for some classes of Navier-Stokes equations},
url = {http://eudml.org/doc/73194},
volume = {9},
year = {1988},
}

TY - JOUR
AU - Ebihara, Y.
AU - Medeiros, L.A.
TI - On the regular solutions for some classes of Navier-Stokes equations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1988
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 1
SP - 77
EP - 101
LA - eng
KW - existence; uniqueness; regular solutions; incompressible Navier-Stokes equations; decay estimate; Galerkin approximation; perturbation technique; penalization
UR - http://eudml.org/doc/73194
ER -

References

top
  1. [1] Aubin ( J.A.).— Un théorème de compacité, sl Comptes Rendus A. Sc.Paris, Juin 1963, p. 5042-5044. Zbl0195.13002MR152860
  2. [2] Ebihara ( Y.). - On solutions of semilinear wave equations, Nonlinear Analysis, t. 6, n°5, 1982, p. 467-486. Zbl0487.35063MR661712
  3. [3] Giga ( Y.).- Weak and strong solutions of the Navier-Stokes initial value Problem, Publ. RIMS, Kyoto Univ., t. 19, 1983, p. 887-910. Zbl0547.35101MR723454
  4. [4] Leray ( J.).- Essai sur les mouvements plans d'un liquide visqueux qui limitent des parois, J. Math. Pures et Appl., t. 13, 1934, p. 331-418. Zbl60.0727.01JFM60.0727.01
  5. [5] Lions ( J.L.). - Sur l'existence de solutions des équations de Navier-Stokes, Comptes Rendus A. Sci.Paris, Mai, 1959, p. 2847-2849. Zbl0090.08203MR104930
  6. [6] Lions ( J.L.) - Prodi ( G.). - Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, Comptes Rendus A. Sci.Paris, Juin, 1959, p. 3519-3521. Zbl0091.42105MR108964
  7. [7] Lions ( J.L.). - Quelques méthodes de résolution des problèmes aux limites non linéaires.- Dunod, Paris, 1969. Zbl0189.40603MR259693
  8. [8] Lions ( J.L.). - Some problems connected with the Navier-Stokes equations. - IVELAM, Lima, Peru, 1978. 
  9. [9] Mizohata ( S.).— The theory of partial differential equations.— Cambridge, London, 1973. Zbl0263.35001MR599580
  10. [10] Rautmann ( R.). — On optimal regularity of Navier-Stokes Solutions at time t = 0, Math. Z., t. 184, 1983, p. 141-149. Zbl0508.35068MR716267
  11. [11] Serrin ( J.). - The initial value problem for the Navier-Stokes equations - Nonlinear problems, ed. by E. Langer, 1963, p. 69-98. Zbl0115.08502MR150444
  12. [12] Tartar ( L.).— Topics in nonlinear analysis.— Univ. Paris Sud, Orsay, France, 1978. Zbl0395.00008MR532371
  13. [13] Temam ( R.).— Navier-Stokes equations - theory and numerical analysis.— North Holland , N.Y.1979. Zbl0426.35003MR603444

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.