A Cauchy problem for u t - Δ u = u p with 0 < p < 1 . Asymptotic behaviour of solutions

J. Aguirre; M. Escobedo

Annales de la Faculté des sciences de Toulouse : Mathématiques (1986-1987)

  • Volume: 8, Issue: 2, page 175-203
  • ISSN: 0240-2963

How to cite

top

Aguirre, J., and Escobedo, M.. "A Cauchy problem for $u_t - \Delta u = u^p \ \hbox{with}\ 0 &lt; p &lt; 1$. Asymptotic behaviour of solutions." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.2 (1986-1987): 175-203. <http://eudml.org/doc/73195>.

@article{Aguirre1986-1987,
author = {Aguirre, J., Escobedo, M.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {existence; uniqueness; regularity; global solutions; Cauchy problem; self-similar solutions; asymptotic behaviour; nonlinear heat equation},
language = {eng},
number = {2},
pages = {175-203},
publisher = {UNIVERSITE PAUL SABATIER},
title = {A Cauchy problem for $u_t - \Delta u = u^p \ \hbox\{with\}\ 0 &lt; p &lt; 1$. Asymptotic behaviour of solutions},
url = {http://eudml.org/doc/73195},
volume = {8},
year = {1986-1987},
}

TY - JOUR
AU - Aguirre, J.
AU - Escobedo, M.
TI - A Cauchy problem for $u_t - \Delta u = u^p \ \hbox{with}\ 0 &lt; p &lt; 1$. Asymptotic behaviour of solutions
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1986-1987
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 2
SP - 175
EP - 203
LA - eng
KW - existence; uniqueness; regularity; global solutions; Cauchy problem; self-similar solutions; asymptotic behaviour; nonlinear heat equation
UR - http://eudml.org/doc/73195
ER -

References

top
  1. [1] Aronson ( D.G.) and Weinberger ( H.F.). — Multidimensional nonlinear diffusion arising in population genetics, Advances in Mathematics, t. 30, 1978, p. 33-76. Zbl0407.92014MR511740
  2. [2] Ekeland ( I.) and Temann ( R.).- Analyse Convexe et Problèmes Variationnels. Dunod, Paris, 1974. Zbl0281.49001
  3. [3] Escobedo ( M.) and Kavian ( O.).— Variational problems related to self-similar solutions of the heat equation. - to appear in J. of Nonlinear Analysis, Theory, Methods & Appl.. Zbl0639.35038
  4. [4] Escobedo ( M.) & Kavian ( O.) & Matano ( H.).- in preparation. 
  5. [5] Fujita ( H.).-On the blowing up of solutions of the Cauchy problem for ut = Δu + u1+α, J. Fac. Sci. Univ. of Tokio, Sect. I, t. 13, 1966, p. 109-124. Zbl0163.34002MR214914
  6. [6] Gmira ( A.) and Veron ( L.).— Large time bahaviour of the solutions of a semilinear parabolic equation in Rn, J. of Diff. Eq., t. 53, 1984, p. 259-276. Zbl0529.35041MR748242
  7. [7] Haraux ( A.) and Weissler ( F.B.).— Non uniqueness for a semilinear initial value problem, Indiana Univ. Math. J., t. 31, n°2, 1982, p. 167-189. Zbl0465.35049MR648169
  8. [8] Hayakawa ( K.). — On non-existence of global solutions of some semilinear parabolic equations, Proc. Japan Acad., t. 49, 1973, p. 503-505. Zbl0281.35039MR338569
  9. [9] Kavian ( O.).— Remarks on the time behaviour of a non linear diffusion equation. Prépublication du Laboratoire d'Analyse Numérique, Universit, P. et M. Curie (Paris VI), 1985. 
  10. [10] Kobayashi ( K.), Sirao ( T.) and Tanaka ( H.).- On the growing up problem for semilinear heat equations, J. Math. Soc. Japan, t. 29, 1977, p. 407-424. Zbl0353.35057MR450783
  11. [11] Weissler ( F.B.).- Rapidly decaying solutions of an O.D.E. with applications to semilinear parabolic P.D.E.'s. - to appear. MR806004
  12. [12] Weissler ( F.B.).- Existence and non-existence of global solutions for a semilinear heat equation, Israel J. of Math., t. 38, n°1-2, 1981, p. 29-39. Zbl0476.35043MR554819

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.