Positive solutions of some coercive-anticoercive elliptic systems

Giovanni Mancini; Enzo Mitidieri

Annales de la Faculté des sciences de Toulouse : Mathématiques (1986-1987)

  • Volume: 8, Issue: 3, page 257-292
  • ISSN: 0240-2963

How to cite

top

Mancini, Giovanni, and Mitidieri, Enzo. "Positive solutions of some coercive-anticoercive elliptic systems." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.3 (1986-1987): 257-292. <http://eudml.org/doc/73201>.

@article{Mancini1986-1987,
author = {Mancini, Giovanni, Mitidieri, Enzo},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {existence-nonexistence; semilinear; critical nonlinearities; maximum principle},
language = {eng},
number = {3},
pages = {257-292},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Positive solutions of some coercive-anticoercive elliptic systems},
url = {http://eudml.org/doc/73201},
volume = {8},
year = {1986-1987},
}

TY - JOUR
AU - Mancini, Giovanni
AU - Mitidieri, Enzo
TI - Positive solutions of some coercive-anticoercive elliptic systems
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1986-1987
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 3
SP - 257
EP - 292
LA - eng
KW - existence-nonexistence; semilinear; critical nonlinearities; maximum principle
UR - http://eudml.org/doc/73201
ER -

References

top
  1. [1] Ambrosetti ( A.), Rabinowitz ( P.H.).- Dual variational methods in critical point theory and applications, J. Funct. Anal., t. 14, 1973, p. 349-381. Zbl0273.49063MR370183
  2. [2] Aris ( R.).— The mathematical theory of diffusion and reaction in permeable catalyst Vol. I-II. — Clarendom Press, Oxford, 1975. Zbl0315.76051
  3. [3] Bahri ( A.), Coron ( J.M.).- Equation de Yamabe sur un ouvert non contractile. Proceedings of the Conference on Variational Methods in Differential Problems, Trieste1985. Zbl0629.35041MR898390
  4. [4] Brezis ( H.). - Elliptic equations with limiting Sobolev exponents : the impact of topology (to appear on Comm. Pure and Appl. Math.). Zbl0601.35043MR861481
  5. [5] Brezis ( H.), Kato ( T.). — Remarks on the Schroedinger operator with singular complex potentials, J. Math. Pures et Appl., t. 59, 1979, p. 137-151. Zbl0408.35025MR539217
  6. [6] Brezis ( H.), Nirenberg ( L.).- Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math., t. XXXIV, 1983, p. 437-477. Zbl0541.35029MR709644
  7. [7] Conway ( E.), Gardner ( R.), Smoller ( J.). - Stability and bifurcation of steady state solutions for predatorpey equations, Adv. in Appl. Math., t. 3, 1982, p. 288-334. Zbl0505.35047MR673245
  8. [8] Correa ( F.J.). — On the existence and multiplicity of positive solutions of a semilinear elliptic system, Trabalho de Matêmatica n°216, Univ. de Brasilia, October 1985. 
  9. [9] Cosner ( C.). — Positive solutions for superlinear elliptic system without variational structure, Nonlinear Anal. T.M.A., t. 12, 1984, p. 1427-1436. Zbl0524.35049MR769404
  10. [10] Cosner ( C.), Lazer ( A.C.). — Stable coexistenc states in the Volterra-Lotka competition model with diffusion, S.I.A.M. on Appl. Math., t. 44, 1984, p. 1112-1133. Zbl0562.92012MR766192
  11. [11] Dancer ( E.N.). — On positive solutions of some pairs of differential equations I, Trans. Amer. Math. Soc., t. 284, 1984, p. 729-743. Zbl0524.35056MR743741
  12. [12] De Figueiredo ( D.G.), Lions ( P.L.), Nussbaum ( R.). — A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures et Appl., t. 61, 1982, p. 41-63. Zbl0452.35030MR664341
  13. [13] De Figueiredo ( D.G.), Mitidieri ( E.). — A maximum principle for an elliptic system and applications to semilinear problems, S.I.A.M. J. Math. Anal., t. 17, 1986, p. 836-849. Zbl0608.35022MR846392
  14. [14] Gidas ( B.) - Ni ( W.M.) - Niremberg ( L.). — Simmetry and related properties via the maximum principle, Comm. Math. Phys., t. 68, 1979, p. 209-243. Zbl0425.35020MR544879
  15. [15] Hernandez ( J.).— Continuation and comparison methods for some nonlinear elliptic systems (preprint). MR907728
  16. [16] Klaasen ( G.) - Mitidieri ( E.). -Standing wave solutions for a system derived from the Fitzhugh-Nagumo equations for nerve conduction, S.I.A.M. J. Math. Anal., t. 17, 1968, p. 74-83. Zbl0593.35043MR819214
  17. [17] Lazer ( A.C.) - Mc Kenna ( P.J.).— On steady state solutions of a system of reaction diffusion equations from biology, Nonlinear Analysis, t. 6, 1982, p. 523-530. Zbl0488.35039MR664014
  18. [18] Lions ( P.L.).— On the existence of positive solutions of semilinear elliptic equations, S.I.A.M. Rev., t. 24, 1982, p. 441-467. Zbl0511.35033MR678562
  19. [19] Lions ( P.L.).— The concentration compactness principle in the calculus of variations : The locally compact case, Parts I and II, Ann. Inst. H. Poincaré Anal. Non linéaire, t. 1, 1984, p. 109-145 and 223-284. Zbl0541.49009MR778970
  20. [20] Mc Leod ( J.B.).—In preparation. 
  21. [21] Rothe ( F.). — Global existence of branches of stationary solutions for a system of reaction diffusion equations from biology, Nonlinear Analysis, t. 5, 1981, p. 487-498. Zbl0471.35031MR613057
  22. [22] Schoen ( R.). — Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geometry, t. 20, 1984, p. 479-495. Zbl0576.53028MR788292
  23. [23] Struwe ( M.). — A global existence result for elliptic boundary value problem involving limiting nonlinearities, Math. Z., t. 187, 1984, p. 511-517. Zbl0535.35025MR760051
  24. [24] Troy ( W.C.).- Symmetry properties in system of semilinear elliptic equations, J. Differential equations, t. 42, 1981, p. 400-413. Zbl0486.35032MR639230

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.