Positive solutions of some coercive-anticoercive elliptic systems
Giovanni Mancini; Enzo Mitidieri
Annales de la Faculté des sciences de Toulouse : Mathématiques (1986-1987)
- Volume: 8, Issue: 3, page 257-292
- ISSN: 0240-2963
Access Full Article
topHow to cite
topMancini, Giovanni, and Mitidieri, Enzo. "Positive solutions of some coercive-anticoercive elliptic systems." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.3 (1986-1987): 257-292. <http://eudml.org/doc/73201>.
@article{Mancini1986-1987,
author = {Mancini, Giovanni, Mitidieri, Enzo},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {existence-nonexistence; semilinear; critical nonlinearities; maximum principle},
language = {eng},
number = {3},
pages = {257-292},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Positive solutions of some coercive-anticoercive elliptic systems},
url = {http://eudml.org/doc/73201},
volume = {8},
year = {1986-1987},
}
TY - JOUR
AU - Mancini, Giovanni
AU - Mitidieri, Enzo
TI - Positive solutions of some coercive-anticoercive elliptic systems
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1986-1987
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 3
SP - 257
EP - 292
LA - eng
KW - existence-nonexistence; semilinear; critical nonlinearities; maximum principle
UR - http://eudml.org/doc/73201
ER -
References
top- [1] Ambrosetti ( A.), Rabinowitz ( P.H.).- Dual variational methods in critical point theory and applications, J. Funct. Anal., t. 14, 1973, p. 349-381. Zbl0273.49063MR370183
- [2] Aris ( R.).— The mathematical theory of diffusion and reaction in permeable catalyst Vol. I-II. — Clarendom Press, Oxford, 1975. Zbl0315.76051
- [3] Bahri ( A.), Coron ( J.M.).- Equation de Yamabe sur un ouvert non contractile. Proceedings of the Conference on Variational Methods in Differential Problems, Trieste1985. Zbl0629.35041MR898390
- [4] Brezis ( H.). - Elliptic equations with limiting Sobolev exponents : the impact of topology (to appear on Comm. Pure and Appl. Math.). Zbl0601.35043MR861481
- [5] Brezis ( H.), Kato ( T.). — Remarks on the Schroedinger operator with singular complex potentials, J. Math. Pures et Appl., t. 59, 1979, p. 137-151. Zbl0408.35025MR539217
- [6] Brezis ( H.), Nirenberg ( L.).- Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math., t. XXXIV, 1983, p. 437-477. Zbl0541.35029MR709644
- [7] Conway ( E.), Gardner ( R.), Smoller ( J.). - Stability and bifurcation of steady state solutions for predatorpey equations, Adv. in Appl. Math., t. 3, 1982, p. 288-334. Zbl0505.35047MR673245
- [8] Correa ( F.J.). — On the existence and multiplicity of positive solutions of a semilinear elliptic system, Trabalho de Matêmatica n°216, Univ. de Brasilia, October 1985.
- [9] Cosner ( C.). — Positive solutions for superlinear elliptic system without variational structure, Nonlinear Anal. T.M.A., t. 12, 1984, p. 1427-1436. Zbl0524.35049MR769404
- [10] Cosner ( C.), Lazer ( A.C.). — Stable coexistenc states in the Volterra-Lotka competition model with diffusion, S.I.A.M. on Appl. Math., t. 44, 1984, p. 1112-1133. Zbl0562.92012MR766192
- [11] Dancer ( E.N.). — On positive solutions of some pairs of differential equations I, Trans. Amer. Math. Soc., t. 284, 1984, p. 729-743. Zbl0524.35056MR743741
- [12] De Figueiredo ( D.G.), Lions ( P.L.), Nussbaum ( R.). — A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures et Appl., t. 61, 1982, p. 41-63. Zbl0452.35030MR664341
- [13] De Figueiredo ( D.G.), Mitidieri ( E.). — A maximum principle for an elliptic system and applications to semilinear problems, S.I.A.M. J. Math. Anal., t. 17, 1986, p. 836-849. Zbl0608.35022MR846392
- [14] Gidas ( B.) - Ni ( W.M.) - Niremberg ( L.). — Simmetry and related properties via the maximum principle, Comm. Math. Phys., t. 68, 1979, p. 209-243. Zbl0425.35020MR544879
- [15] Hernandez ( J.).— Continuation and comparison methods for some nonlinear elliptic systems (preprint). MR907728
- [16] Klaasen ( G.) - Mitidieri ( E.). -Standing wave solutions for a system derived from the Fitzhugh-Nagumo equations for nerve conduction, S.I.A.M. J. Math. Anal., t. 17, 1968, p. 74-83. Zbl0593.35043MR819214
- [17] Lazer ( A.C.) - Mc Kenna ( P.J.).— On steady state solutions of a system of reaction diffusion equations from biology, Nonlinear Analysis, t. 6, 1982, p. 523-530. Zbl0488.35039MR664014
- [18] Lions ( P.L.).— On the existence of positive solutions of semilinear elliptic equations, S.I.A.M. Rev., t. 24, 1982, p. 441-467. Zbl0511.35033MR678562
- [19] Lions ( P.L.).— The concentration compactness principle in the calculus of variations : The locally compact case, Parts I and II, Ann. Inst. H. Poincaré Anal. Non linéaire, t. 1, 1984, p. 109-145 and 223-284. Zbl0541.49009MR778970
- [20] Mc Leod ( J.B.).—In preparation.
- [21] Rothe ( F.). — Global existence of branches of stationary solutions for a system of reaction diffusion equations from biology, Nonlinear Analysis, t. 5, 1981, p. 487-498. Zbl0471.35031MR613057
- [22] Schoen ( R.). — Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geometry, t. 20, 1984, p. 479-495. Zbl0576.53028MR788292
- [23] Struwe ( M.). — A global existence result for elliptic boundary value problem involving limiting nonlinearities, Math. Z., t. 187, 1984, p. 511-517. Zbl0535.35025MR760051
- [24] Troy ( W.C.).- Symmetry properties in system of semilinear elliptic equations, J. Differential equations, t. 42, 1981, p. 400-413. Zbl0486.35032MR639230
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.