Some 2-type submanifolds and applications

Bang-Yen Chen; Huei-Shyong Lue

Annales de la Faculté des sciences de Toulouse : Mathématiques (1988)

  • Volume: 9, Issue: 1, page 121-131
  • ISSN: 0240-2963

How to cite

top

Chen, Bang-Yen, and Lue, Huei-Shyong. "Some 2-type submanifolds and applications." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.1 (1988): 121-131. <http://eudml.org/doc/73217>.

@article{Chen1988,
author = {Chen, Bang-Yen, Lue, Huei-Shyong},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {2-type submanifolds; parallel mean curvature vector},
language = {eng},
number = {1},
pages = {121-131},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Some 2-type submanifolds and applications},
url = {http://eudml.org/doc/73217},
volume = {9},
year = {1988},
}

TY - JOUR
AU - Chen, Bang-Yen
AU - Lue, Huei-Shyong
TI - Some 2-type submanifolds and applications
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1988
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 1
SP - 121
EP - 131
LA - eng
KW - 2-type submanifolds; parallel mean curvature vector
UR - http://eudml.org/doc/73217
ER -

References

top
  1. [1] Chen ( B.Y.), Barros ( M.) and Garay ( O.J.).-Spherical finite type hypersurfaces, Alg. Groups Geom., t. 4, 1987, p. 58-72. Zbl0633.53078MR903939
  2. [2] Chen ( B.Y.).— Geometry of submanifolds. — M. Dekker, New-York, 1973. Zbl0262.53036MR353212
  3. [3] Chen ( B.Y.).— Total mean curvature and submanifolds of finite type.—World Scientific, New-Jersey and Singapore1984. Zbl0537.53049MR749575
  4. [4] Chen ( B.Y.).—Finite type submanifolds and generalizations.—University of Rome, Rome, 1985. Zbl0586.53023MR833510
  5. [5] Chen ( B.Y.). - 2-type submanifolds and their applications, Chinese J.Math., t. 14, 1986, p. 1-14. Zbl0604.53021MR861185
  6. [6] Chen ( B.Y.).— Surfaces of finite type in Euclidean 3-space, Bull. Math. Soc. Belg., t. 39, 1987, p. 243-254. Zbl0628.53011MR901606
  7. [7] Efimov ( N.V.).-Generation of singularities on surfaces of negative curvature (Russian), Mat. Sbornik, t. 64, 1964, p. 286-320. Zbl0126.37402MR167938
  8. [8] Milnor ( T.K.). - Efimov's theorem about complete immersed surfaces of negative curvature, Advances in Math., t. 8, 1972, p. 474-543. Zbl0236.53055MR301679
  9. [9] Garay ( O.J.).— 2-type hypersurfaces into the Euclidean space.— preprint 1987. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.