Some 2-type submanifolds and applications

Bang-Yen Chen; Huei-Shyong Lue

Annales de la Faculté des sciences de Toulouse : Mathématiques (1988)

  • Volume: 9, Issue: 1, page 121-131
  • ISSN: 0240-2963

How to cite

top

Chen, Bang-Yen, and Lue, Huei-Shyong. "Some 2-type submanifolds and applications." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.1 (1988): 121-131. <http://eudml.org/doc/73217>.

@article{Chen1988,
author = {Chen, Bang-Yen, Lue, Huei-Shyong},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {2-type submanifolds; parallel mean curvature vector},
language = {eng},
number = {1},
pages = {121-131},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Some 2-type submanifolds and applications},
url = {http://eudml.org/doc/73217},
volume = {9},
year = {1988},
}

TY - JOUR
AU - Chen, Bang-Yen
AU - Lue, Huei-Shyong
TI - Some 2-type submanifolds and applications
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1988
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 1
SP - 121
EP - 131
LA - eng
KW - 2-type submanifolds; parallel mean curvature vector
UR - http://eudml.org/doc/73217
ER -

References

top
  1. [1] Chen ( B.Y.), Barros ( M.) and Garay ( O.J.).-Spherical finite type hypersurfaces, Alg. Groups Geom., t. 4, 1987, p. 58-72. Zbl0633.53078MR903939
  2. [2] Chen ( B.Y.).— Geometry of submanifolds. — M. Dekker, New-York, 1973. Zbl0262.53036MR353212
  3. [3] Chen ( B.Y.).— Total mean curvature and submanifolds of finite type.—World Scientific, New-Jersey and Singapore1984. Zbl0537.53049MR749575
  4. [4] Chen ( B.Y.).—Finite type submanifolds and generalizations.—University of Rome, Rome, 1985. Zbl0586.53023MR833510
  5. [5] Chen ( B.Y.). - 2-type submanifolds and their applications, Chinese J.Math., t. 14, 1986, p. 1-14. Zbl0604.53021MR861185
  6. [6] Chen ( B.Y.).— Surfaces of finite type in Euclidean 3-space, Bull. Math. Soc. Belg., t. 39, 1987, p. 243-254. Zbl0628.53011MR901606
  7. [7] Efimov ( N.V.).-Generation of singularities on surfaces of negative curvature (Russian), Mat. Sbornik, t. 64, 1964, p. 286-320. Zbl0126.37402MR167938
  8. [8] Milnor ( T.K.). - Efimov's theorem about complete immersed surfaces of negative curvature, Advances in Math., t. 8, 1972, p. 474-543. Zbl0236.53055MR301679
  9. [9] Garay ( O.J.).— 2-type hypersurfaces into the Euclidean space.— preprint 1987. 

NotesEmbed ?

top

You must be logged in to post comments.