Some 2-type submanifolds and applications
Bang-Yen Chen; Huei-Shyong Lue
Annales de la Faculté des sciences de Toulouse : Mathématiques (1988)
- Volume: 9, Issue: 1, page 121-131
- ISSN: 0240-2963
Access Full Article
topHow to cite
topChen, Bang-Yen, and Lue, Huei-Shyong. "Some 2-type submanifolds and applications." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.1 (1988): 121-131. <http://eudml.org/doc/73217>.
@article{Chen1988,
author = {Chen, Bang-Yen, Lue, Huei-Shyong},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {2-type submanifolds; parallel mean curvature vector},
language = {eng},
number = {1},
pages = {121-131},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Some 2-type submanifolds and applications},
url = {http://eudml.org/doc/73217},
volume = {9},
year = {1988},
}
TY - JOUR
AU - Chen, Bang-Yen
AU - Lue, Huei-Shyong
TI - Some 2-type submanifolds and applications
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1988
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 1
SP - 121
EP - 131
LA - eng
KW - 2-type submanifolds; parallel mean curvature vector
UR - http://eudml.org/doc/73217
ER -
References
top- [1] Chen ( B.Y.), Barros ( M.) and Garay ( O.J.).-Spherical finite type hypersurfaces, Alg. Groups Geom., t. 4, 1987, p. 58-72. Zbl0633.53078MR903939
- [2] Chen ( B.Y.).— Geometry of submanifolds. — M. Dekker, New-York, 1973. Zbl0262.53036MR353212
- [3] Chen ( B.Y.).— Total mean curvature and submanifolds of finite type.—World Scientific, New-Jersey and Singapore1984. Zbl0537.53049MR749575
- [4] Chen ( B.Y.).—Finite type submanifolds and generalizations.—University of Rome, Rome, 1985. Zbl0586.53023MR833510
- [5] Chen ( B.Y.). - 2-type submanifolds and their applications, Chinese J.Math., t. 14, 1986, p. 1-14. Zbl0604.53021MR861185
- [6] Chen ( B.Y.).— Surfaces of finite type in Euclidean 3-space, Bull. Math. Soc. Belg., t. 39, 1987, p. 243-254. Zbl0628.53011MR901606
- [7] Efimov ( N.V.).-Generation of singularities on surfaces of negative curvature (Russian), Mat. Sbornik, t. 64, 1964, p. 286-320. Zbl0126.37402MR167938
- [8] Milnor ( T.K.). - Efimov's theorem about complete immersed surfaces of negative curvature, Advances in Math., t. 8, 1972, p. 474-543. Zbl0236.53055MR301679
- [9] Garay ( O.J.).— 2-type hypersurfaces into the Euclidean space.— preprint 1987.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.