Normalisation d'une représentation non linéaire d'une algèbre de Lie

Didier Arnal; Mabrouk Benammar; Mohamed Selmi

Annales de la Faculté des sciences de Toulouse : Mathématiques (1988)

  • Volume: 9, Issue: 3, page 355-379
  • ISSN: 0240-2963

How to cite

top

Arnal, Didier, Benammar, Mabrouk, and Selmi, Mohamed. "Normalisation d'une représentation non linéaire d'une algèbre de Lie." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.3 (1988): 355-379. <http://eudml.org/doc/73219>.

@article{Arnal1988,
author = {Arnal, Didier, Benammar, Mabrouk, Selmi, Mohamed},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {normal form; nonlinear formal representation; complex Lie algebra},
language = {fre},
number = {3},
pages = {355-379},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Normalisation d'une représentation non linéaire d'une algèbre de Lie},
url = {http://eudml.org/doc/73219},
volume = {9},
year = {1988},
}

TY - JOUR
AU - Arnal, Didier
AU - Benammar, Mabrouk
AU - Selmi, Mohamed
TI - Normalisation d'une représentation non linéaire d'une algèbre de Lie
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1988
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 3
SP - 355
EP - 379
LA - fre
KW - normal form; nonlinear formal representation; complex Lie algebra
UR - http://eudml.org/doc/73219
ER -

References

top
  1. [1] Arnal ( D.), Ben Ammar ( M.) et Pinczon ( G.). — The Poincaré Dulac theorem for nonlinear representation of nilpotent Lie algebras, L.M.P, t. 8, 1984, p. 467-476. Zbl0559.17006MR772700
  2. [2] Ben Ammar ( M.). - Nonlinear representations of connected nilpotent real Lie groups, L.M.P., t. 8, 1984, p. 119-126. Zbl0577.22011MR740813
  3. [3] Brjuno ( A.). — Forme analytique des équations différentielles, Trandy M.M.O., t. 25, 1971, p. 119-262. 
  4. [4] Chaperon ( M.).- Géométrie différentielle et singularité de systèmes dynamiques, Astérisque, t. 138.139, 1986. Zbl0601.58002MR858911
  5. [5] Kuo Tsei Chen .— Equivalence and decomposition of vector fields about an elementary critical point, Amer. J. Math., t. 85, 1963, p. 693-722. Zbl0119.07505MR160010
  6. [6] Dumortier ( F.) et Roussarie ( R.). — Smooth linearization of germs of R2 actions and holomorphic vector fields, Ann. Inst. Fourier, 30(1), p. 31-64. Zbl0418.58015MR576072
  7. [7] Flato ( M.), Pinczon ( G.), Simon ( J.). — Nonlinear representations of Lie groups, Ann. Scien. E.N. Sup.Paris, 4e série, t. 10, 1977, p. 405. Zbl0384.22005MR507241
  8. [8] Guillemin ( V.W.) and Sternberg ( S.). — Remarks on a paper of Hermann, Trans. Amer. Math. Soc., t. 130, 1968, p. 110-116. Zbl0155.05701MR217226
  9. [9] Hermann ( R.). — The formal linearization of a semi-simple Lie algebra of vector fields about a singular point, Trans. Amer. Soc., t. 130, 1968, p. 105-109. Zbl0155.05604MR217225
  10. [10] Hochschild ( G.) and Serre ( J.P.). - Cohomology of Lie algebras, Ann. of Math., t. 57 n°3, 1953, p. 591-603. Zbl0053.01402MR54581
  11. [11] Jabobson ( N.). — Lie algebras. — Dover Public. Inc. -N.Y.1962. Zbl0121.27504
  12. [12] Livingston ( E.S.) and Elliot ( D.L.). - Linearization of vector fields, Journal of diffequations, t. 55 n°3, 1984, p. 289-299. Zbl0508.58043MR766125
  13. [13] Serre ( J.P.). — Lie algebras and Lie groups. — W.A. Benjamin, Inc.New-York, Amsterdam, 1965. Zbl0132.27803MR218496

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.