On the composition of nondegenerate quadratic forms with an arbitrary index
Julian Ławrynowicz; Jakub Rembieliński
Annales de la Faculté des sciences de Toulouse : Mathématiques (1989)
- Volume: 10, Issue: 1, page 141-168
- ISSN: 0240-2963
Access Full Article
topHow to cite
topŁawrynowicz, Julian, and Rembieliński, Jakub. "On the composition of nondegenerate quadratic forms with an arbitrary index." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.1 (1989): 141-168. <http://eudml.org/doc/73222>.
@article{Ławrynowicz1989,
author = {Ławrynowicz, Julian, Rembieliński, Jakub},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {index; nondegenerate bilinear forms; signatures; antisymmetric; Clifford algebras; Hermitian},
language = {eng},
number = {1},
pages = {141-168},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the composition of nondegenerate quadratic forms with an arbitrary index},
url = {http://eudml.org/doc/73222},
volume = {10},
year = {1989},
}
TY - JOUR
AU - Ławrynowicz, Julian
AU - Rembieliński, Jakub
TI - On the composition of nondegenerate quadratic forms with an arbitrary index
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1989
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 1
SP - 141
EP - 168
LA - eng
KW - index; nondegenerate bilinear forms; signatures; antisymmetric; Clifford algebras; Hermitian
UR - http://eudml.org/doc/73222
ER -
References
top- [1] Adem ( J.). — Construction of some normed maps, Bol. Soc. Mat. Mexicana (2), t. 20, 1975, p. 59-75. Zbl0498.17014MR466253
- [2] .- On maximal sets of anticommuting matrices, Ibid. (2), t. 23, 1978, p. 61-67. Zbl0447.15008MR579663
- [3] Adem ( J.).- On the Hurwitz problem over an arbitrary field I-II Ibid. (2), 251980, 29-51 and (2) , t. 26, 1986, p. 29-41. Zbl0484.10013MR636968
- [4] Cartan ( E.).—The theory of spinors, transl. from French Paris : Hermann1966. Zbl0147.40101MR208503
- [5] Chevalley ( C.).-The algebraic theory of spinors. Columbia : Columbia Univ. Press1954. Zbl0057.25901MR60497
- [6] Crumeyrolle ( A.). — Bilinéarité et géométrie affine attachées aux espaces de spineurs complexes, minkowskiens ou autres, Ann. Inst. Henri Poincaré, t. 34, 1981, p. 351-372. Zbl0454.53011MR612222
- [7] Construction d'algèbres de Lie graduées orthosymplectiques et conformosymplectiques minkowskiennes. — in : Seminar on deformations, Proceeding, Łódź-Warsaw 1982-84, Lectue Notes in Math.1165, Berlin-Heidelberg-New York-Tokyo : Springer1985, p. 52-83. Zbl0584.17010MR825748
- [8] Frohlich ( A.), Mcevett ( A.).—Forms over rings with involution, J. Algebra, t. 12, 1969, p. 79-104. Zbl0256.15017MR274480
- [9] Geramita ( A.V.), Seberry ( J.). — Orthogonal designs. Lecture Notes in Pure and Applied Math.45, New York-Basel :Marcel Dekker1979. Zbl0411.05023MR534614
- [10] Hestenes ( D.).—A unified laguage for mathematics and physics, in : Clifford algebras and their applications in mathematical physics, Proceeding, Canterbury 1985Dordrecht :Reidel1986 p. 1-23. Zbl0596.15027MR863423
- [11] Hurwitz ( A.).- Uber die Komposition der quadratischen Formen. Math. Ann.881923, p. 1-25; reprinted in : A. Hurwitz, Mathematische WerkeII. BaselBirkhäuser1933 p. 641-666. JFM48.1164.03
- [12] Kalina ( J.), Ławrynowicz ( J.), Suzuki ( O.). — A field equation defined by a Hurwitz pair, in Proc. of the 13th Winter School on Abstract Analysis, Srni 1985. Suppl. Rend. Circ. Mat. Palermo (2) 91985 p. 117-128. Zbl0613.35066MR853134
- [13] .- Partial differential equations connected with some Clifford structures and the related quasiconformal mappings, in Proc. Conf. "Metodi di Analisi Reale nelle Equaziono alle Derivate Parziali" Cagliari1985, to appear.
- [14] Ławrynowicz ( J.), Rembielinski ( J.). — Hurwitz pairs equipped with complex structures, in : Seminar on deformations, Proceedings, Łódź—Warsaw—1982—84— Lecture Notes in Math.1165, Berlin-Heidelberg-New-York-Tokyo : Springer1985, p. 184-195. Zbl0591.15019MR825754
- [15] .- Supercomplex vector spaces and spontaneous symmetric breaking, in : Seminari di Geometria 1984, Bologna:Università di Bologna1985, p. 131-154. Zbl0605.30050MR866154
- [16] .— Pseudo-euclidean Hurwitz pairs and generalized Fueter Equations. (a) Inst. Math. Polish Acad. Sci. Preprint p. 355, II + 101985 (b) In : Clifford algebras and their applications in mathematical physics, Proceedings, Canterbury 1985, Dordrecht : Reidel1986 p.39-48. Zbl0597.15019MR863425
- [17] .— Pseudo-euclidean Hurwitz pairs and the Kaluza-Klein theories. J. Phys. A. Math. Gen., to appear. Zbl0654.15021MR939891
- [18] .—Complete classification for pseudo-euclidean Hurwitz pairs including the symetry operations. Bull. Soc. Sci. Lettres Łódź36, no. 29 (Série : Recherches sur les déformations3, no. 39) 1986, p. 15.
- [19] Ramirez De Arellano ( E.) Wene ( G.P.).- The correspondance between type-changing transformations of pseudo-euclidean Hurwitz pairs and Clifford algebras in preparation.
- [20] Lam, Kee Yuen, . — The algebraic theory of quadratic forms, Reading, MA : W.A. Benjamin, Inc.1973.. Zbl0259.10019
- [21] Lee ( H.C.).—Sur le théorème de Hurwitz-Radon pour la composition des formes quadratique, Comment. Math. Helv., t. 21, 1948, p. 261-269. Zbl0030.29203MR26637
- [22] Porteous ( I.R.).—Topological geometry, 2nd ed. Combridge : Cambridge Univ. Press1981. Zbl0446.15001MR606198
- [23] Roman ( P.). - Advanced quantum theory, Reading, MA : Addison-Wesley Publ. Co.1965. Zbl0127.18603MR192757
- [24] Shapiro ( D.B.).—Spaces of similarities I-II, J. Algebra461977, p. 148-164 and p. 165-181. Zbl0358.15024MR453636
- [25] .- Spaces of similarities IV, Pac. J. Math, t. 69, 1977, p. 223-224. Zbl0326.15015MR476634
- [26] .— Hasse principle for the Hurwitz problem, J. reine angew. Math., t. 301, 1978, p. 179-190. Zbl0376.10018MR506082
- [27] .— Products of sums of squares, Expo. Math, t. 2, 1984, p. 235-261. Zbl0541.10025MR783137
- [28] Suzuki ( O.), Ławrynowicz ( J.), Kalina ( J.), Kanemaki ( S.). — A geometric approach to the Kadomtsev-Petviasvili system I, Proc. Inst. Nat. Sci. Coll. Hum. Sci. Nihon Univ, t. 21, 1986, p. 11-34.
- [29] .— A geometric approach to the Kadomtsev-Petviasvili system II. Ibid., to appear.
- [30] Wadsworth ( A.), Shapiro ( D.B.).—Spaces of similarities III. J. Algebra t. 461977 p. 182-188. Zbl0358.15026MR453638
Citations in EuDML Documents
top- Wiesław Królikowski, Pairs of Clifford algebras of the Hurwitz type
- Julian Ławrynowicz, Katarzyna Kędzia, Osamu Suzuki, Supercomplex structures, surface soliton equations, and quasiconformal mappings
- Julian Ławrynowicz, Jakub Rembieliński, Francesco Succi, Generalized Hurwitz maps of the type S × V → W, anti-involutions, and quantum braided Clifford algebras
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.