On the composition of nondegenerate quadratic forms with an arbitrary index

Julian Ławrynowicz; Jakub Rembieliński

Annales de la Faculté des sciences de Toulouse : Mathématiques (1989)

  • Volume: 10, Issue: 1, page 141-168
  • ISSN: 0240-2963

How to cite

top

Ławrynowicz, Julian, and Rembieliński, Jakub. "On the composition of nondegenerate quadratic forms with an arbitrary index." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.1 (1989): 141-168. <http://eudml.org/doc/73222>.

@article{Ławrynowicz1989,
author = {Ławrynowicz, Julian, Rembieliński, Jakub},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {index; nondegenerate bilinear forms; signatures; antisymmetric; Clifford algebras; Hermitian},
language = {eng},
number = {1},
pages = {141-168},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the composition of nondegenerate quadratic forms with an arbitrary index},
url = {http://eudml.org/doc/73222},
volume = {10},
year = {1989},
}

TY - JOUR
AU - Ławrynowicz, Julian
AU - Rembieliński, Jakub
TI - On the composition of nondegenerate quadratic forms with an arbitrary index
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1989
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 1
SP - 141
EP - 168
LA - eng
KW - index; nondegenerate bilinear forms; signatures; antisymmetric; Clifford algebras; Hermitian
UR - http://eudml.org/doc/73222
ER -

References

top
  1. [1] Adem ( J.). — Construction of some normed maps, Bol. Soc. Mat. Mexicana (2), t. 20, 1975, p. 59-75. Zbl0498.17014MR466253
  2. [2] .- On maximal sets of anticommuting matrices, Ibid. (2), t. 23, 1978, p. 61-67. Zbl0447.15008MR579663
  3. [3] Adem ( J.).- On the Hurwitz problem over an arbitrary field I-II Ibid. (2), 251980, 29-51 and (2) , t. 26, 1986, p. 29-41. Zbl0484.10013MR636968
  4. [4] Cartan ( E.).—The theory of spinors, transl. from French Paris : Hermann1966. Zbl0147.40101MR208503
  5. [5] Chevalley ( C.).-The algebraic theory of spinors. Columbia : Columbia Univ. Press1954. Zbl0057.25901MR60497
  6. [6] Crumeyrolle ( A.). — Bilinéarité et géométrie affine attachées aux espaces de spineurs complexes, minkowskiens ou autres, Ann. Inst. Henri Poincaré, t. 34, 1981, p. 351-372. Zbl0454.53011MR612222
  7. [7] Construction d'algèbres de Lie graduées orthosymplectiques et conformosymplectiques minkowskiennes. — in : Seminar on deformations, Proceeding, Łódź-Warsaw 1982-84, Lectue Notes in Math.1165, Berlin-Heidelberg-New York-Tokyo : Springer1985, p. 52-83. Zbl0584.17010MR825748
  8. [8] Frohlich ( A.), Mcevett ( A.).—Forms over rings with involution, J. Algebra, t. 12, 1969, p. 79-104. Zbl0256.15017MR274480
  9. [9] Geramita ( A.V.), Seberry ( J.). — Orthogonal designs. Lecture Notes in Pure and Applied Math.45, New York-Basel :Marcel Dekker1979. Zbl0411.05023MR534614
  10. [10] Hestenes ( D.).—A unified laguage for mathematics and physics, in : Clifford algebras and their applications in mathematical physics, Proceeding, Canterbury 1985Dordrecht :Reidel1986 p. 1-23. Zbl0596.15027MR863423
  11. [11] Hurwitz ( A.).- Uber die Komposition der quadratischen Formen. Math. Ann.881923, p. 1-25; reprinted in : A. Hurwitz, Mathematische WerkeII. BaselBirkhäuser1933 p. 641-666. JFM48.1164.03
  12. [12] Kalina ( J.), Ławrynowicz ( J.), Suzuki ( O.). — A field equation defined by a Hurwitz pair, in Proc. of the 13th Winter School on Abstract Analysis, Srni 1985. Suppl. Rend. Circ. Mat. Palermo (2) 91985 p. 117-128. Zbl0613.35066MR853134
  13. [13] .- Partial differential equations connected with some Clifford structures and the related quasiconformal mappings, in Proc. Conf. "Metodi di Analisi Reale nelle Equaziono alle Derivate Parziali" Cagliari1985, to appear. 
  14. [14] Ławrynowicz ( J.), Rembielinski ( J.). — Hurwitz pairs equipped with complex structures, in : Seminar on deformations, Proceedings, Łódź—Warsaw—1982—84— Lecture Notes in Math.1165, Berlin-Heidelberg-New-York-Tokyo : Springer1985, p. 184-195. Zbl0591.15019MR825754
  15. [15] .- Supercomplex vector spaces and spontaneous symmetric breaking, in : Seminari di Geometria 1984, Bologna:Università di Bologna1985, p. 131-154. Zbl0605.30050MR866154
  16. [16] .— Pseudo-euclidean Hurwitz pairs and generalized Fueter Equations. (a) Inst. Math. Polish Acad. Sci. Preprint p. 355, II + 101985 (b) In : Clifford algebras and their applications in mathematical physics, Proceedings, Canterbury 1985, Dordrecht : Reidel1986 p.39-48. Zbl0597.15019MR863425
  17. [17] .— Pseudo-euclidean Hurwitz pairs and the Kaluza-Klein theories. J. Phys. A. Math. Gen., to appear. Zbl0654.15021MR939891
  18. [18] .—Complete classification for pseudo-euclidean Hurwitz pairs including the symetry operations. Bull. Soc. Sci. Lettres Łódź36, no. 29 (Série : Recherches sur les déformations3, no. 39) 1986, p. 15. 
  19. [19] Ramirez De Arellano ( E.) Wene ( G.P.).- The correspondance between type-changing transformations of pseudo-euclidean Hurwitz pairs and Clifford algebras in preparation. 
  20. [20] Lam, Kee Yuen, . — The algebraic theory of quadratic forms, Reading, MA : W.A. Benjamin, Inc.1973.. Zbl0259.10019
  21. [21] Lee ( H.C.).—Sur le théorème de Hurwitz-Radon pour la composition des formes quadratique, Comment. Math. Helv., t. 21, 1948, p. 261-269. Zbl0030.29203MR26637
  22. [22] Porteous ( I.R.).—Topological geometry, 2nd ed. Combridge : Cambridge Univ. Press1981. Zbl0446.15001MR606198
  23. [23] Roman ( P.). - Advanced quantum theory, Reading, MA : Addison-Wesley Publ. Co.1965. Zbl0127.18603MR192757
  24. [24] Shapiro ( D.B.).—Spaces of similarities I-II, J. Algebra461977, p. 148-164 and p. 165-181. Zbl0358.15024MR453636
  25. [25] .- Spaces of similarities IV, Pac. J. Math, t. 69, 1977, p. 223-224. Zbl0326.15015MR476634
  26. [26] .— Hasse principle for the Hurwitz problem, J. reine angew. Math., t. 301, 1978, p. 179-190. Zbl0376.10018MR506082
  27. [27] .— Products of sums of squares, Expo. Math, t. 2, 1984, p. 235-261. Zbl0541.10025MR783137
  28. [28] Suzuki ( O.), Ławrynowicz ( J.), Kalina ( J.), Kanemaki ( S.). — A geometric approach to the Kadomtsev-Petviasvili system I, Proc. Inst. Nat. Sci. Coll. Hum. Sci. Nihon Univ, t. 21, 1986, p. 11-34. 
  29. [29] .— A geometric approach to the Kadomtsev-Petviasvili system II. Ibid., to appear. 
  30. [30] Wadsworth ( A.), Shapiro ( D.B.).—Spaces of similarities III. J. Algebra t. 461977 p. 182-188. Zbl0358.15026MR453638

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.