Orbites périodiques des systèmes hamiltoniens du type de celui des trois corps

Abbas Bahri; Paul-H. Rabinowitz

Annales de la Faculté des sciences de Toulouse : Mathématiques (1990)

  • Volume: 11, Issue: 2, page 9-21
  • ISSN: 0240-2963

How to cite

top

Bahri, Abbas, and Rabinowitz, Paul-H.. "Orbites périodiques des systèmes hamiltoniens du type de celui des trois corps." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.2 (1990): 9-21. <http://eudml.org/doc/73264>.

@article{Bahri1990,
author = {Bahri, Abbas, Rabinowitz, Paul-H.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Hamiltonian systems; three-body problem; periodic orbits; variational approach; Palais-Smale condition},
language = {fre},
number = {2},
pages = {9-21},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Orbites périodiques des systèmes hamiltoniens du type de celui des trois corps},
url = {http://eudml.org/doc/73264},
volume = {11},
year = {1990},
}

TY - JOUR
AU - Bahri, Abbas
AU - Rabinowitz, Paul-H.
TI - Orbites périodiques des systèmes hamiltoniens du type de celui des trois corps
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1990
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 2
SP - 9
EP - 21
LA - fre
KW - Hamiltonian systems; three-body problem; periodic orbits; variational approach; Palais-Smale condition
UR - http://eudml.org/doc/73264
ER -

References

top
  1. [1] Poincaré ( H.) .— Les méthodes nouvelles de la Mécanique Céleste, Librairie Albert Blanchard, Paris1987 MR926907
  2. [2] Alekseev ( V.M.) .— On the capture orbits for the three-body problem for negative energy constant, Uspekhi Mat. Nauk, 24 (1969) pp. 185-186 Zbl0188.29101MR244579
  3. Alekseev ( V.M.) . — Sur l'allure finale du mouvement dans le problème des trois corps, Actes du Congrès Int. des Math.1970, 2, pp. 893-907, Gauthier-Villars, Paris1971 Zbl0266.70005MR650646
  4. [3] Gordon ( W.B.) . - Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 204 (1975) pp. 113-135 Zbl0276.58005MR377983
  5. [4] Ambroseti ( A.) and Coti-Zelati ( V.) .— Critical points with lack of compactness and applications to singular Hamiltonian systems, to appear 
  6. [5] Degiovanni ( M.), Giannoni ( F.) and Marino ( A.) .— Periodic solutions of dynamical systems with Newtonian type potentials, in "Periodic Solutions of Hamiltonian Systems and Related Topics (P.H. Rabinowitz, et al Eds) 29, pp. 111-115, NATO ASI Series, Reidel, Dordrecht1987 Zbl0632.34038MR920613
  7. [6] Greco ( C.) . — Periodic solutions of a class of singular hamiltonian systems, Nonlinear Analysis : TMA, 12 (1988) pp. 259-270 Zbl0648.34048MR928560
  8. [7] Coti-Zelati ( V.) — Morse Theory and periodic solutions of Hamiltonian systems, Preprint, SISSATrieste 
  9. [8] Sullivan ( D.) and Vigué-Poirrier ( M.) .— The homology theory of the closed geodesic problem, J. Diff. Geom., 11 (1976) pp. 633-644 Zbl0361.53058MR455028
  10. [9] Bahri ( A.) and Rabinowitz ( P.H.) .— A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal., 82 (1983) pp. 412-428 Zbl0681.70018MR987301
  11. [10] Bahri ( A.) and Rabinowitz ( P.H.) .— Periodic solutions of Hamiltonian systemsof 3-body type, to appear Zbl0745.34034MR1145561

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.