Convergence of unilateral convex sets in higher order Sobolev spaces

Enrico Vitali

Annales de la Faculté des sciences de Toulouse : Mathématiques (1990)

  • Volume: 11, Issue: 3, page 93-149
  • ISSN: 0240-2963

How to cite

top

Vitali, Enrico. "Convergence of unilateral convex sets in higher order Sobolev spaces." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.3 (1990): 93-149. <http://eudml.org/doc/73270>.

@article{Vitali1990,
author = {Vitali, Enrico},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Mosco convergence},
language = {eng},
number = {3},
pages = {93-149},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Convergence of unilateral convex sets in higher order Sobolev spaces},
url = {http://eudml.org/doc/73270},
volume = {11},
year = {1990},
}

TY - JOUR
AU - Vitali, Enrico
TI - Convergence of unilateral convex sets in higher order Sobolev spaces
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1990
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 3
SP - 93
EP - 149
LA - eng
KW - Mosco convergence
UR - http://eudml.org/doc/73270
ER -

References

top
  1. [1] Adams ( D.R.) . — Sets and functions of finite Lp-capacity, Indiana Univ. Math. J.27 (1978) pp. 283-291. Zbl0384.31004MR486575
  2. [2] Adams ( D.R.) .— Lp-capacitary integrals with some applications, Proc. Symposia in Pure Math., vol. XXXV, Part I (1979) pp. 359-367. Zbl0418.31006MR545276
  3. [3] Attouch ( H.) .- Variational convergence for functions and operators, Pitman, London (1984). Zbl0561.49012MR773850
  4. [4] Attouch ( H.) and Picard ( C.) .— Problèmes variationnels et théorie du potentiel non linéaire, Ann. Fac. Sci. Toulouse Math. (5) 1 (1979) pp. 89-136. Zbl0418.49012MR554374
  5. [5] Attouch ( H.) and Picard ( C.) .— Inéquations variationnelles avec obstacles et espaces fonctionnels en théorie du potentiel, Applicable Analysis12 (1981) pp. 287-306. Zbl0479.49008MR653202
  6. [6] Boccardo ( L.) and Murat ( F.) .— Nouveaux résultats de convergence dans des problèmes unilatéraux, Nonlinear partial differential equations and their applications, Collège de France seminar, vol. II, pp. 64-85, Res. Notes in Math., Pitman, London (1982). Zbl0484.49009MR652507
  7. [7] Choquet ( G.) .— Lectures on analysis, vol. I, Mathematics Lecture Note Series, Benjamin, Inc. (1969). Zbl0181.39601
  8. [8] Dal Maso ( G.) . — On the integral representation of certain local functionals, Ricerche Mat.32 (1983) pp. 85-113. Zbl0543.49001MR740203
  9. [9] Dal Maso ( G.). — Some necessary and sufficient conditions for the convergence of sequences of unilateral convex sets, J. Funct. Anal.62 (1985) pp. 119-159. Zbl0582.49008MR791845
  10. [10] Dal Maso ( G.) .- And Introduction to Γ-convergence, Corso S.I.S.S.A.1986/87, Trieste. 
  11. [11] Dal Maso ( G.) .— r-convergence and μ-capacities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987) pp. 423-464. Zbl0657.49005MR951228
  12. [12] Dal Maso ( G.) and Defranceschi ( A.) .— Limits of nonlinear Dirichlet problems in varying domains, Manuscripta Math.61 (1988) pp. 251-278. Zbl0653.49017MR949817
  13. [13] Dal Maso ( G.) and Modica ( L.) .- A general theory of variational functionals, Topics in functional analysis (1980-1981) pp. 149-221, Quaderni Scuola Norm. Sup. Pisa, (1981). Zbl0493.49005MR671757
  14. [14] Dal Maso ( G.) and Paderni ( G.) .— Variational inequalities for the biharmonic operator with variable obstacles, Ann. Mat. Pura Appl. (4) 153 (1988) pp. 203-227. Zbl0674.49006MR1008345
  15. [15] De Giorgi ( E.) and Franzoni ( T.) .— Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia3 (1979) pp. 63-101. 
  16. [16] De Giorgi ( E.) and Letta ( G.) . - Une notion générale de convergence faible pour des functions croissantes d'ensemble, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977) pp. 61-99. Zbl0405.28008MR466479
  17. [17] Fuglede ( B.) .— The quasi topology associated with a countably subadditive set function, Ann. Inst. Fourier (Grenoble)21 (1971) pp. 123-169. Zbl0197.19401MR283158
  18. [18] Hedberg ( L.I.) .— Spectral synthesis in Sobolev spaces and uniqueness of the Dirichlet problem, Acta Math.147 (1981) pp. 237-264. Zbl0504.35018MR639040
  19. [19] Hedberg ( L.I.) and Wolff ( T.H.) .— Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble)33 (1983) pp. 161-188. Zbl0508.31008MR727526
  20. [20] MAZ'YA ( V.G.) and Khavin ( V.P.) .— Nonlinear potential theory, Russian Math. Surveys27 (1972) pp. 71-148. Zbl0269.31004
  21. [21] Meyers ( N.G.) - A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand.26 (1970) pp. 255-292. Zbl0242.31006MR277741
  22. [22] Mosco ( U.) .— Convergence of convex sets and of solutions of variational inequalities, Adv. in Math.3 (1969) pp. 510-585. Zbl0192.49101MR298508
  23. [23] Mosco ( U.) .— An introduction to the approximate solution of variational inequalities, Constructive aspects of functional analysis, Corso C.I.M.E. (1971), vol. II, pp. 499-685, Edizioni Cremonese, Roma (1973). Zbl0266.49005
  24. [24] Picard ( C.) .— Problème biharmonique avec obstacles variables, Thèse, Univ. Paris-Sud (1984) 
  25. [25] Sonntag ( Y.) . — Convergence au sens de U. Mosco, Thèse, Univ. de Provence, Marseille (1980). 
  26. [26] Stein ( E.M.) .— Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, New Jersey (1970). Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.