A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions

Xianling Fan

Annales de la Faculté des sciences de Toulouse : Mathématiques (1991)

  • Volume: 12, Issue: 3, page 365-372
  • ISSN: 0240-2963

How to cite

top

Fan, Xianling. "A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.3 (1991): 365-372. <http://eudml.org/doc/73286>.

@article{Fan1991,
author = {Fan, Xianling},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {differential inclusion; Hamiltonian inclusion; conservative periodic solution},
language = {eng},
number = {3},
pages = {365-372},
publisher = {UNIVERSITE PAUL SABATIER},
title = {A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions},
url = {http://eudml.org/doc/73286},
volume = {12},
year = {1991},
}

TY - JOUR
AU - Fan, Xianling
TI - A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1991
PB - UNIVERSITE PAUL SABATIER
VL - 12
IS - 3
SP - 365
EP - 372
LA - eng
KW - differential inclusion; Hamiltonian inclusion; conservative periodic solution
UR - http://eudml.org/doc/73286
ER -

References

top
  1. [1] Hofer ( H.) and Zehnder ( E.) .— Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math.90 (1987) pp. 1-9. Zbl0631.58022
  2. [2] Viterbo ( C.) .— A proof of the Weinstein conjecture in IR2n, Ann. Inst. H. Poincaré, Anal. non linéaire4 (1987) pp. 337-356. Zbl0631.58013
  3. [3] Clarke ( F.) . — Optimization and Nonsmooth AnalysisJohn Wiley & Sons (1983). Zbl0582.49001
  4. [4] Fan ( X.) .— The C1-admissible approximation for Lipschitz functions and the Hamiltonian inclusions, Adv. Math. China, 20:1 (1991) pp. 177-178. Zbl0751.41032
  5. [5] Benci ( V.), Hofer ( H.) and Rabinowitz ( P.) . — A remark on a priori bounds and existence for periodic solutions of Hamiltonian systems, In Periodic Solutions of Hamiltonian Systems and Related Topics (R. Rabinowitz) et al, Eds D. Reidel Publishing Company (1987) pp. 85-88. Zbl0656.34033
  6. [6] Chang ( K.) .— Variational methods for non-differentiable functionals and its applications to partial differential equations, J. Math. Anal. Appl.80 (1981) pp. 102-129. Zbl0487.49027
  7. [7] Borisovich ( YU.), Gelman ( B.), Muschkis ( A.) and Obuhovskii ( V.) .— Topological methods in the fixed point theory of multivalued mappings, Usp. Mat. Nauk. Russian, 35 (1980) pp. 59-126. Zbl0464.55003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.