A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions
Annales de la Faculté des sciences de Toulouse : Mathématiques (1991)
- Volume: 12, Issue: 3, page 365-372
- ISSN: 0240-2963
Access Full Article
topHow to cite
topFan, Xianling. "A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.3 (1991): 365-372. <http://eudml.org/doc/73286>.
@article{Fan1991,
author = {Fan, Xianling},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {differential inclusion; Hamiltonian inclusion; conservative periodic solution},
language = {eng},
number = {3},
pages = {365-372},
publisher = {UNIVERSITE PAUL SABATIER},
title = {A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions},
url = {http://eudml.org/doc/73286},
volume = {12},
year = {1991},
}
TY - JOUR
AU - Fan, Xianling
TI - A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1991
PB - UNIVERSITE PAUL SABATIER
VL - 12
IS - 3
SP - 365
EP - 372
LA - eng
KW - differential inclusion; Hamiltonian inclusion; conservative periodic solution
UR - http://eudml.org/doc/73286
ER -
References
top- [1] Hofer ( H.) and Zehnder ( E.) .— Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math.90 (1987) pp. 1-9. Zbl0631.58022
- [2] Viterbo ( C.) .— A proof of the Weinstein conjecture in IR2n, Ann. Inst. H. Poincaré, Anal. non linéaire4 (1987) pp. 337-356. Zbl0631.58013
- [3] Clarke ( F.) . — Optimization and Nonsmooth AnalysisJohn Wiley & Sons (1983). Zbl0582.49001
- [4] Fan ( X.) .— The C1-admissible approximation for Lipschitz functions and the Hamiltonian inclusions, Adv. Math. China, 20:1 (1991) pp. 177-178. Zbl0751.41032
- [5] Benci ( V.), Hofer ( H.) and Rabinowitz ( P.) . — A remark on a priori bounds and existence for periodic solutions of Hamiltonian systems, In Periodic Solutions of Hamiltonian Systems and Related Topics (R. Rabinowitz) et al, Eds D. Reidel Publishing Company (1987) pp. 85-88. Zbl0656.34033
- [6] Chang ( K.) .— Variational methods for non-differentiable functionals and its applications to partial differential equations, J. Math. Anal. Appl.80 (1981) pp. 102-129. Zbl0487.49027
- [7] Borisovich ( YU.), Gelman ( B.), Muschkis ( A.) and Obuhovskii ( V.) .— Topological methods in the fixed point theory of multivalued mappings, Usp. Mat. Nauk. Russian, 35 (1980) pp. 59-126. Zbl0464.55003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.