PPCM de suites de polynômes

Edgard Bavencoffe

Annales de la Faculté des sciences de Toulouse : Mathématiques (1992)

  • Volume: 1, Issue: 2, page 147-168
  • ISSN: 0240-2963

How to cite

top

Bavencoffe, Edgard. "PPCM de suites de polynômes." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.2 (1992): 147-168. <http://eudml.org/doc/73298>.

@article{Bavencoffe1992,
author = {Bavencoffe, Edgard},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {linear recurrence sequence; degree of product; degree of least common multiple; monic polynomials with complex coefficients},
language = {fre},
number = {2},
pages = {147-168},
publisher = {UNIVERSITE PAUL SABATIER},
title = {PPCM de suites de polynômes},
url = {http://eudml.org/doc/73298},
volume = {1},
year = {1992},
}

TY - JOUR
AU - Bavencoffe, Edgard
TI - PPCM de suites de polynômes
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1992
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 2
SP - 147
EP - 168
LA - fre
KW - linear recurrence sequence; degree of product; degree of least common multiple; monic polynomials with complex coefficients
UR - http://eudml.org/doc/73298
ER -

References

top
  1. [1] Matiyasevich ( Y.V.) et Richard ( K.G.) .— A new formula for π, American Mathematic Monthly93 (1986), pp. 631-635. Zbl0614.10003MR1712797
  2. [2] Davis ( M.) . — Hilbert 's tenth problem is unsolvable, American Mathematic Monthly80 (1973), pp. 233-269. Zbl0277.02008MR317916
  3. [3] Kiss ( P.) et Matyas ( F.) . — An asymptotic formula for π, Journal of Number Theory31 (1989), pp. 255-259. Zbl0665.10006MR993902
  4. [4] Akiyama ( S.). — Lehmer numbers and as asymptotic formula for π, Journal of Number Theory36 (1990), pp. 328-331. Zbl0708.11016MR1077711
  5. [5] Bézivin ( J.-P.). — Plus petit commun multiple des termes consécutifs d'une suite récurrente linéaire, Collectanea Mathematica40, n° 1 (1989), pp. 1-11. Zbl0708.11015MR1078087
  6. [6] Jones ( J.P.) et Kiss ( P.) . — An asymptotic formula concerning Lehmer numbers, à paraître. Zbl0797.11022
  7. [7] Apostol ( T.M.). — Introduction to analytic number theory, Springer-Verlag (1976). Zbl0335.10001MR434929

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.