Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds
Annales de la Faculté des sciences de Toulouse : Mathématiques (1992)
- Volume: 1, Issue: 2, page 169-186
- ISSN: 0240-2963
Access Full Article
topHow to cite
topHsu, Pei, and Kendall, Wilfrid S.. "Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.2 (1992): 169-186. <http://eudml.org/doc/73299>.
@article{Hsu1992,
author = {Hsu, Pei, Kendall, Wilfrid S.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {stochastic differential equations; Cartan-Hadamard manifold; explosion time of the Brownian motion},
language = {eng},
number = {2},
pages = {169-186},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds},
url = {http://eudml.org/doc/73299},
volume = {1},
year = {1992},
}
TY - JOUR
AU - Hsu, Pei
AU - Kendall, Wilfrid S.
TI - Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1992
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 2
SP - 169
EP - 186
LA - eng
KW - stochastic differential equations; Cartan-Hadamard manifold; explosion time of the Brownian motion
UR - http://eudml.org/doc/73299
ER -
References
top- [1] Anderson ( M.T.) .— The Dirichlet Problem at Infinity for Manifolds of Negative Curvature, J. Diff. Geom.18 (1983), pp. 701-722. Zbl0541.53036MR730923
- [2] Cheeger ( J.) and Ebin ( D.G.) .— Comparison Theorems in Riemannian Geometry, North Holland, Amsterdam (1975). Zbl0309.53035MR458335
- [3] Dynkin ( E.B.) .— Markov Processes, Springer-Verlag, Berlin (1965). Zbl0132.37901MR193671
- [4] Elworthy ( K.D.) . — Stochastic Differential Equations on Manifolds, Cambridge University Press, Cambridge (1982). Zbl0514.58001MR675100
- [5] Goldberg ( S.I.) and Mueller ( C.) .— Brownian motion, geometry, and generalizations of Picard's little theorem, Ann. Probab.11 (1983), pp. 833-846. Zbl0523.60073MR714949
- [6] Greene ( R.E.) and Wu ( H.) .— Function Theory on Manifolds Which Possess a Pole, Springer Lecture Notes in Mathematics699, Springer-Verlag, Berlin (1979). Zbl0414.53043MR521983
- [7] Hsu ( P.) and March ( P.) .— The Limiting Angle of Certain Riemannian Brownian Motions, Comm. Pure and Applied Math.38 (1985), pp. 755-768. Zbl0615.58044MR812346
- [8] Huang ( H.) and Kendall ( W.S.) .— Correction note to "Martingales on Manifolds and Harmonic Maps", In: Stochastics 37 (1991), pp. 253-257. Zbl0737.58054MR1149350
- [9] Kendall ( W.S.) . - Brownian motion, negative curvature, and harmonic maps, In: Stochastic Integrals, Proceedings, London Mathematical Society Durham Symposium, 1980, (ed. D. Williams), Springer Lecture Notes in Mathematics851Springer, Berlin (1981), pp. 479-491. Zbl0467.60072MR621002
- [10] Kendall ( W.S.) .— Brownian motion and a generalised little Picard's theorem, Trans. Amer. Math. Soc.275 (1983), pp. 751-760. Zbl0507.58017MR682729
- [11] Kendall ( W.S.) . - Brownian motion on 2-dimensional manifolds of negative curvature, Séminaire de Probabilités XVIII, Springer Lecture Notes in Mathematics1059, Springer- Verlag, Berlin (1984), pp. 70-76. Zbl0539.58040MR770949
- [12] Kendall ( W.S.) .— Stochastic differential geometry, a coupling property, and harmonic maps, Journal London Math. Soc.33 ( 1986a), pp. 554-566. Zbl0573.58029MR850971
- [13] Kendall ( W.S.) .— Nonnegative Ricci curvature and the Brownian coupling property, Stochastics19 (1986b), pp. 111-129. Zbl0584.58045MR864339
- [14] Kendall ( W.S.) .— Stochastic differential geometry, In: Proceeding of the First World Congress of the Bernoulli Society (eds. Yu.V. Prohorov and V.V. Sazonov), volume 1, VNU Press, Utrecht (1987), pp. 515-524. Zbl0696.53026MR1092391
- [15] Kendall ( W.S.) . — Martingales on Manifolds and Harmonic Maps, Contemporary Mathematics73 (1988), pp. 121-157; see also Huang and Kendall (1991). Zbl0673.58052MR954635
- [16] Kendall ( W.S.) .— Symbolic Itô calculus: an introduction, Department of Statistics, University of Warwick, Research Report 217 (1991).
- [17] Kifer ( J.) . — Brownian motion and harmonic functions on manifolds of negative curvature, Theor. Probab. Appl.21 (1976), pp. 81-95. Zbl0361.60050MR420887
- [18] March ( P.) .— Brownian motion and harmonic functions on rotationally symmetric manifolds, Ann. Probab.14 (1986), pp. 793-801. Zbl0593.60078MR841584
- [19] Milnor ( J.) . — On deciding whether a surface is parabolic or hyperbolic, Amer. Math. Monthly84 (1977), pp. 43-46. Zbl0356.53002MR428232
- [20] Motoo ( M.) . — Proofof the law of iterated logarithm through diffusion equation, Ann. Inst. Statist. Math.10 (1959), pp. 21-28. Zbl0084.35801MR97866
- [21] Prat ( J.J.) . - Étude Asymptotique et Convergence Angulaire du Mouvement Brownien sur une Variété à Courbure Négative, C. R. Acad. Sci. A280 (1975), pp. 1539-1542. Zbl0309.60052MR388557
- [22] Rogers ( L.C.G.) and Williams ( D.) .— Diffusions, Markov Processes, and Martingales, Volume 2, Wiley, Chichester (1987). Zbl0627.60001MR921238
- [23] Shiga ( T.) and Watanabe ( S.) . — Bessel Diffusions as a One-Parameter Family of Diffusion Processes, Zeitschrift für Wahrscheinlichkeitstheorie und v. Geb.27 (1973), pp. 37-46. Zbl0327.60047MR368192
- [24] Sullivan ( D.) . - The Dirichlet Problem at Infinity for a Negatively Curved Manifold, J. Diff. Geom.18 (1983), pp. 723-732. Zbl0541.53037MR730924
- [25] Yamada ( Y.) . — On a comparison theorem for solutions of stochastic differential equations and its applications, J. Math. Kyoto Univ.13 (1973), pp. 497-512. Zbl0277.60047MR339334
- [26] Choi ( H.I.) .— Asymptotic Dirichlet Problems for Harmonic Functions on Riemannian Manifolds, Trans. Amer. Math. Soc.281 (1984), pp. 691-716. Zbl0541.53035MR722769
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.