Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds

Pei Hsu; Wilfrid S. Kendall

Annales de la Faculté des sciences de Toulouse : Mathématiques (1992)

  • Volume: 1, Issue: 2, page 169-186
  • ISSN: 0240-2963

How to cite

top

Hsu, Pei, and Kendall, Wilfrid S.. "Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.2 (1992): 169-186. <http://eudml.org/doc/73299>.

@article{Hsu1992,
author = {Hsu, Pei, Kendall, Wilfrid S.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {stochastic differential equations; Cartan-Hadamard manifold; explosion time of the Brownian motion},
language = {eng},
number = {2},
pages = {169-186},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds},
url = {http://eudml.org/doc/73299},
volume = {1},
year = {1992},
}

TY - JOUR
AU - Hsu, Pei
AU - Kendall, Wilfrid S.
TI - Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1992
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 2
SP - 169
EP - 186
LA - eng
KW - stochastic differential equations; Cartan-Hadamard manifold; explosion time of the Brownian motion
UR - http://eudml.org/doc/73299
ER -

References

top
  1. [1] Anderson ( M.T.) .— The Dirichlet Problem at Infinity for Manifolds of Negative Curvature, J. Diff. Geom.18 (1983), pp. 701-722. Zbl0541.53036MR730923
  2. [2] Cheeger ( J.) and Ebin ( D.G.) .— Comparison Theorems in Riemannian Geometry, North Holland, Amsterdam (1975). Zbl0309.53035MR458335
  3. [3] Dynkin ( E.B.) .— Markov Processes, Springer-Verlag, Berlin (1965). Zbl0132.37901MR193671
  4. [4] Elworthy ( K.D.) . — Stochastic Differential Equations on Manifolds, Cambridge University Press, Cambridge (1982). Zbl0514.58001MR675100
  5. [5] Goldberg ( S.I.) and Mueller ( C.) .— Brownian motion, geometry, and generalizations of Picard's little theorem, Ann. Probab.11 (1983), pp. 833-846. Zbl0523.60073MR714949
  6. [6] Greene ( R.E.) and Wu ( H.) .— Function Theory on Manifolds Which Possess a Pole, Springer Lecture Notes in Mathematics699, Springer-Verlag, Berlin (1979). Zbl0414.53043MR521983
  7. [7] Hsu ( P.) and March ( P.) .— The Limiting Angle of Certain Riemannian Brownian Motions, Comm. Pure and Applied Math.38 (1985), pp. 755-768. Zbl0615.58044MR812346
  8. [8] Huang ( H.) and Kendall ( W.S.) .— Correction note to "Martingales on Manifolds and Harmonic Maps", In: Stochastics 37 (1991), pp. 253-257. Zbl0737.58054MR1149350
  9. [9] Kendall ( W.S.) . - Brownian motion, negative curvature, and harmonic maps, In: Stochastic Integrals, Proceedings, London Mathematical Society Durham Symposium, 1980, (ed. D. Williams), Springer Lecture Notes in Mathematics851Springer, Berlin (1981), pp. 479-491. Zbl0467.60072MR621002
  10. [10] Kendall ( W.S.) .— Brownian motion and a generalised little Picard's theorem, Trans. Amer. Math. Soc.275 (1983), pp. 751-760. Zbl0507.58017MR682729
  11. [11] Kendall ( W.S.) . - Brownian motion on 2-dimensional manifolds of negative curvature, Séminaire de Probabilités XVIII, Springer Lecture Notes in Mathematics1059, Springer- Verlag, Berlin (1984), pp. 70-76. Zbl0539.58040MR770949
  12. [12] Kendall ( W.S.) .— Stochastic differential geometry, a coupling property, and harmonic maps, Journal London Math. Soc.33 ( 1986a), pp. 554-566. Zbl0573.58029MR850971
  13. [13] Kendall ( W.S.) .— Nonnegative Ricci curvature and the Brownian coupling property, Stochastics19 (1986b), pp. 111-129. Zbl0584.58045MR864339
  14. [14] Kendall ( W.S.) .— Stochastic differential geometry, In: Proceeding of the First World Congress of the Bernoulli Society (eds. Yu.V. Prohorov and V.V. Sazonov), volume 1, VNU Press, Utrecht (1987), pp. 515-524. Zbl0696.53026MR1092391
  15. [15] Kendall ( W.S.) . — Martingales on Manifolds and Harmonic Maps, Contemporary Mathematics73 (1988), pp. 121-157; see also Huang and Kendall (1991). Zbl0673.58052MR954635
  16. [16] Kendall ( W.S.) .— Symbolic Itô calculus: an introduction, Department of Statistics, University of Warwick, Research Report 217 (1991). 
  17. [17] Kifer ( J.) . — Brownian motion and harmonic functions on manifolds of negative curvature, Theor. Probab. Appl.21 (1976), pp. 81-95. Zbl0361.60050MR420887
  18. [18] March ( P.) .— Brownian motion and harmonic functions on rotationally symmetric manifolds, Ann. Probab.14 (1986), pp. 793-801. Zbl0593.60078MR841584
  19. [19] Milnor ( J.) . — On deciding whether a surface is parabolic or hyperbolic, Amer. Math. Monthly84 (1977), pp. 43-46. Zbl0356.53002MR428232
  20. [20] Motoo ( M.) . — Proofof the law of iterated logarithm through diffusion equation, Ann. Inst. Statist. Math.10 (1959), pp. 21-28. Zbl0084.35801MR97866
  21. [21] Prat ( J.J.) . - Étude Asymptotique et Convergence Angulaire du Mouvement Brownien sur une Variété à Courbure Négative, C. R. Acad. Sci. A280 (1975), pp. 1539-1542. Zbl0309.60052MR388557
  22. [22] Rogers ( L.C.G.) and Williams ( D.) .— Diffusions, Markov Processes, and Martingales, Volume 2, Wiley, Chichester (1987). Zbl0627.60001MR921238
  23. [23] Shiga ( T.) and Watanabe ( S.) . — Bessel Diffusions as a One-Parameter Family of Diffusion Processes, Zeitschrift für Wahrscheinlichkeitstheorie und v. Geb.27 (1973), pp. 37-46. Zbl0327.60047MR368192
  24. [24] Sullivan ( D.) . - The Dirichlet Problem at Infinity for a Negatively Curved Manifold, J. Diff. Geom.18 (1983), pp. 723-732. Zbl0541.53037MR730924
  25. [25] Yamada ( Y.) . — On a comparison theorem for solutions of stochastic differential equations and its applications, J. Math. Kyoto Univ.13 (1973), pp. 497-512. Zbl0277.60047MR339334
  26. [26] Choi ( H.I.) .— Asymptotic Dirichlet Problems for Harmonic Functions on Riemannian Manifolds, Trans. Amer. Math. Soc.281 (1984), pp. 691-716. Zbl0541.53035MR722769

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.