Bifurcation d'orbites homoclines pour les systèmes hamiltoniens

Salem Mathlouthi

Annales de la Faculté des sciences de Toulouse : Mathématiques (1992)

  • Volume: 1, Issue: 2, page 211-236
  • ISSN: 0240-2963

How to cite

top

Mathlouthi, Salem. "Bifurcation d'orbites homoclines pour les systèmes hamiltoniens." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.2 (1992): 211-236. <http://eudml.org/doc/73301>.

@article{Mathlouthi1992,
author = {Mathlouthi, Salem},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {nonlinear dynamics; bifurcation; Hamiltonian systems; homoclinic set},
language = {fre},
number = {2},
pages = {211-236},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Bifurcation d'orbites homoclines pour les systèmes hamiltoniens},
url = {http://eudml.org/doc/73301},
volume = {1},
year = {1992},
}

TY - JOUR
AU - Mathlouthi, Salem
TI - Bifurcation d'orbites homoclines pour les systèmes hamiltoniens
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1992
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 2
SP - 211
EP - 236
LA - fre
KW - nonlinear dynamics; bifurcation; Hamiltonian systems; homoclinic set
UR - http://eudml.org/doc/73301
ER -

References

top
  1. [1] Coti Zelati ( V.), Ekeland ( I.) et Séré ( E.) . — A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann.288 (1990), pp. 133-160. Zbl0731.34050MR1070929
  2. [2] Séré ( E.) . - Une approche variationnelle au problème des orbites homoclines de systèmes hamiltonien, Preprint. 
  3. [3] Coti Zelati ( V.) et Rabinowitz ( P.H.) .— Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, Preprint. Zbl0744.34045
  4. [4] Rabinowitz ( P.H.) . — Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh114A (1990), pp. 33-38. Zbl0705.34054MR1051605
  5. [5] Ekeland ( I.) .— A perturbation theory near convex Hamiltonian systems, Jour. Diff. Equat.50 (1983), pp. 407-440. Zbl0476.34035MR723579
  6. [6] ARNOL'D .— Méthodes mathématiques de la mécanique classique, Editions Mir, Moscou, 1976. Zbl0385.70001MR474391
  7. [7] Blot ( J.) . — Thèse de 3ème cycle, Université Paris IX-Dauphine (1981). 
  8. [8] Albizzatti ( A.) .— Sélection de phase par un terme d'excitation pour les solutions périodiques de certaines équations différentielles, C.R.A.S.Paris, 296 (1983), pp. 259-262. Zbl0524.34048MR693788
  9. [9] Bahri ( A.) et Beresticky ( H.) .— Existence offorced oscillations for some nonlinear differential systems, Comm. Pure and App. Math. (1983). Zbl0588.34028
  10. [10] Gaussens ( E.) . — Thèse d'Etat, Université Paris IX-Dauphine (1984). 
  11. [11] Ambrosetti ( E.), Coti Zelati ( V.) et Ekeland ( I.) .— Symmetry breaking in critical point theory and applications, Jour. Diff. Equat.67 (1987), pp. 165-184. Zbl0606.58043MR879691
  12. [12] Lassoued ( L.) . — Homogénéisation pour des système hamiltoniens, Cahiers de Ceremade n° 8606. 
  13. [13] Poincaré ( H.) . — Les méthodes nouvelles de la mécanique celeste, Gauthier-Villars, Paris (1899). JFM30.0834.08
  14. [14] Greenspan ( B.D.) et Holmes ( P.J.) .— Homoclinic orbits, subharmonics and global bifurcations in forced oscillations, Nonlinear Dynamics and Turbulence (G.I Barenblatt, G. Iooss and D.D. Joseph, eds.) Pitman, Boston-London-Melburne (1983). Zbl0532.58019MR755531
  15. [15] Melikov ( V.K.) . — On the stability of the center for periodic perturbations, Transactions of the Moscow Mathematical Society12 (1963), pp. 1-57. Zbl0135.31001
  16. [16] Hénon ( M.) et Heiles ( C.) . — The applicability of the third integral of motion : some numerical experiments, Astron. J.69 (1973). 
  17. [17] Smale ( S.) .— Diffeomorphisms with many periodic points, Differential and Combinatorial Topology, S.S. Cairns (ed.), pp. 63-80. Princeton University Press, Princeton. Zbl0142.41103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.