Smoothness effect and decay on a class of non linear evolution equation

Jaime E. Muñoz Rivera

Annales de la Faculté des sciences de Toulouse : Mathématiques (1992)

  • Volume: 1, Issue: 2, page 237-260
  • ISSN: 0240-2963

How to cite

top

Muñoz Rivera, Jaime E.. "Smoothness effect and decay on a class of non linear evolution equation." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.2 (1992): 237-260. <http://eudml.org/doc/73302>.

@article{MuñozRivera1992,
author = {Muñoz Rivera, Jaime E.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {asymptotic behaviour; nonlinear evolution equation; positive selfadjoint operator on a Hilbert space; existence and uniqueness of global solutions; smoothing property},
language = {eng},
number = {2},
pages = {237-260},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Smoothness effect and decay on a class of non linear evolution equation},
url = {http://eudml.org/doc/73302},
volume = {1},
year = {1992},
}

TY - JOUR
AU - Muñoz Rivera, Jaime E.
TI - Smoothness effect and decay on a class of non linear evolution equation
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1992
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 2
SP - 237
EP - 260
LA - eng
KW - asymptotic behaviour; nonlinear evolution equation; positive selfadjoint operator on a Hilbert space; existence and uniqueness of global solutions; smoothing property
UR - http://eudml.org/doc/73302
ER -

References

top
  1. [1] Arosio ( A.) and Spagnolo ( S.) . - Global solution of the Cauchy problem for a nonlinear hyperbolic equation. Non linear partial diferential equation and their applications, College de France Seminar, Vol 6. Edited by H. Brezis & J. L. Lions, Pitman-London (1984) pp. 1-26. Zbl0598.35062
  2. [2] Berstein ( S.) .— Sur une classe d'équations fonctionnelles aux dérivées partielles, Izv. Akad. Nauk SSSR, Ser. Mat. 4 (1940) pp. 17-26 (Math. Rev.2 n° 102). Zbl0026.01901JFM66.0471.01
  3. [3] Ikehata ( R.) and Okazawa ( N.) .— Yosida approximation and nonlinear hyperbolic equation, Nonlinear Analysis, Theory, Method and Application, Vol. 15, 5 (1990) pp. 479-495. Zbl0715.35050
  4. [4] Lions ( J.L.) .— Quelques Méthodes de résolution de problèmes aux limites non linéaires, Dunod Gauthier Villars, Paris (1969). Zbl0189.40603
  5. [5] Lions ( J.L.) and Magenes ( E.) . — Non Homogeneous Boundary Value Problems and aplications, Springer-VerlagNew-York (1972). Zbl0223.35039
  6. [6] Matos ( M.P.) and Pereira ( D.C.) .— On a nonlinear wave equation with strong damping, Funkcial Ekvac., 34 (1991) pp. 303-311. Zbl0746.34039MR1130466
  7. [7] Medeiros ( L.A.) and Milla Miranda ( M.) .— On a non linear wave equation with damping, Revista de Matematica de la Universidad Complutense de Madrid, Vol. 3, 2 (1990). Zbl0721.35044MR1081312
  8. [8] Menzala ( G.P.) .— On global classical solutions of a non linear wave equation, Applicable analysis, 10 (1980) pp. 179-195. Zbl0441.35037MR577330
  9. [9] Nishihara ( K.) .— Degenerate quasilinear hyperbolic equation with strong damping, Funkcialaj Ekvacioj, 27 (1984) pp. 125-145. Zbl0555.35094MR763940
  10. [10] Nishihara ( K.) . - Decay properties of solutions of some quasilinear hyperbolic equation with strong damping, To appear. Zbl0836.34059MR1231525
  11. [11] Pohozaev ( S.I.) .— On a class of quasilinear hyperbolic equation, Math. USSR-Sb., 25-1 (1975) pp. 145-158. Zbl0328.35060MR369938
  12. [12] Zuazua ( E.) .— Stability and Decay for a class of non linear hyperbolic problems, Asymptotic Analysis1 (1988) pp. 161-185. Zbl0677.35069MR950012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.