Smoothness effect and decay on a class of non linear evolution equation
Annales de la Faculté des sciences de Toulouse : Mathématiques (1992)
- Volume: 1, Issue: 2, page 237-260
- ISSN: 0240-2963
Access Full Article
topHow to cite
topMuñoz Rivera, Jaime E.. "Smoothness effect and decay on a class of non linear evolution equation." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.2 (1992): 237-260. <http://eudml.org/doc/73302>.
@article{MuñozRivera1992,
author = {Muñoz Rivera, Jaime E.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {asymptotic behaviour; nonlinear evolution equation; positive selfadjoint operator on a Hilbert space; existence and uniqueness of global solutions; smoothing property},
language = {eng},
number = {2},
pages = {237-260},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Smoothness effect and decay on a class of non linear evolution equation},
url = {http://eudml.org/doc/73302},
volume = {1},
year = {1992},
}
TY - JOUR
AU - Muñoz Rivera, Jaime E.
TI - Smoothness effect and decay on a class of non linear evolution equation
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1992
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 2
SP - 237
EP - 260
LA - eng
KW - asymptotic behaviour; nonlinear evolution equation; positive selfadjoint operator on a Hilbert space; existence and uniqueness of global solutions; smoothing property
UR - http://eudml.org/doc/73302
ER -
References
top- [1] Arosio ( A.) and Spagnolo ( S.) . - Global solution of the Cauchy problem for a nonlinear hyperbolic equation. Non linear partial diferential equation and their applications, College de France Seminar, Vol 6. Edited by H. Brezis & J. L. Lions, Pitman-London (1984) pp. 1-26. Zbl0598.35062
- [2] Berstein ( S.) .— Sur une classe d'équations fonctionnelles aux dérivées partielles, Izv. Akad. Nauk SSSR, Ser. Mat. 4 (1940) pp. 17-26 (Math. Rev.2 n° 102). Zbl0026.01901JFM66.0471.01
- [3] Ikehata ( R.) and Okazawa ( N.) .— Yosida approximation and nonlinear hyperbolic equation, Nonlinear Analysis, Theory, Method and Application, Vol. 15, 5 (1990) pp. 479-495. Zbl0715.35050
- [4] Lions ( J.L.) .— Quelques Méthodes de résolution de problèmes aux limites non linéaires, Dunod Gauthier Villars, Paris (1969). Zbl0189.40603
- [5] Lions ( J.L.) and Magenes ( E.) . — Non Homogeneous Boundary Value Problems and aplications, Springer-VerlagNew-York (1972). Zbl0223.35039
- [6] Matos ( M.P.) and Pereira ( D.C.) .— On a nonlinear wave equation with strong damping, Funkcial Ekvac., 34 (1991) pp. 303-311. Zbl0746.34039MR1130466
- [7] Medeiros ( L.A.) and Milla Miranda ( M.) .— On a non linear wave equation with damping, Revista de Matematica de la Universidad Complutense de Madrid, Vol. 3, 2 (1990). Zbl0721.35044MR1081312
- [8] Menzala ( G.P.) .— On global classical solutions of a non linear wave equation, Applicable analysis, 10 (1980) pp. 179-195. Zbl0441.35037MR577330
- [9] Nishihara ( K.) .— Degenerate quasilinear hyperbolic equation with strong damping, Funkcialaj Ekvacioj, 27 (1984) pp. 125-145. Zbl0555.35094MR763940
- [10] Nishihara ( K.) . - Decay properties of solutions of some quasilinear hyperbolic equation with strong damping, To appear. Zbl0836.34059MR1231525
- [11] Pohozaev ( S.I.) .— On a class of quasilinear hyperbolic equation, Math. USSR-Sb., 25-1 (1975) pp. 145-158. Zbl0328.35060MR369938
- [12] Zuazua ( E.) .— Stability and Decay for a class of non linear hyperbolic problems, Asymptotic Analysis1 (1988) pp. 161-185. Zbl0677.35069MR950012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.