A unified approach to various orthogonalities

Claude Brezinski

Annales de la Faculté des sciences de Toulouse : Mathématiques (1992)

  • Volume: 1, Issue: 3, page 277-292
  • ISSN: 0240-2963

How to cite

top

Brezinski, Claude. "A unified approach to various orthogonalities." Annales de la Faculté des sciences de Toulouse : Mathématiques 1.3 (1992): 277-292. <http://eudml.org/doc/73304>.

@article{Brezinski1992,
author = {Brezinski, Claude},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {biorthogonality; recurrence relations; vector orthogonal polynomials; Christoffel-Darboux-type formula; Favard theorem; Laurent-Padé and two- point Padé approximants},
language = {eng},
number = {3},
pages = {277-292},
publisher = {UNIVERSITE PAUL SABATIER},
title = {A unified approach to various orthogonalities},
url = {http://eudml.org/doc/73304},
volume = {1},
year = {1992},
}

TY - JOUR
AU - Brezinski, Claude
TI - A unified approach to various orthogonalities
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1992
PB - UNIVERSITE PAUL SABATIER
VL - 1
IS - 3
SP - 277
EP - 292
LA - eng
KW - biorthogonality; recurrence relations; vector orthogonal polynomials; Christoffel-Darboux-type formula; Favard theorem; Laurent-Padé and two- point Padé approximants
UR - http://eudml.org/doc/73304
ER -

References

top
  1. [1] Brezinski ( C.) .— Padé-type approximation and general orthogonal polynomials, Birkhäuser, Basel (1980). Zbl0418.41012MR561106
  2. [2] Brezinski ( C.) .— A direct proof of the Christoffel-Darboux identity and its equivalence to the recurrence relationship, J. Comput. Appl. Math.32 (1990), pp. 17-25. Zbl0714.33006MR1091771
  3. [3] Brezinski ( C.) .— Generalizations of the Christoffel-Darboux identity for adjacent families of orthogonal polynomials, Appl. Numer. Math.8 (1991), pp.193-199. Zbl0767.42006MR1136129
  4. [4] Brezinski ( C.) .— Biorthogonality and its applications to numerical analysis, Marcel Dekker, New-York (1991). Zbl0757.41001MR1151616
  5. [5] Brezinski ( C.) and Walz ( G.) .- Sequences of transformations and triangular recursion schemes, with applications in numerical analysis, J. Comput. Appl. Math.34 (1991), pp. 361-383. Zbl0732.65004MR1102591
  6. [6] Bultheel ( A.) .— Laurent series and their Padé approximations, Birkhäuser, Basel (1987). Zbl0624.30005MR1015712
  7. [7] Da Rocha ( Z.) .— Implementation of the recurrence relations of biorthogonality, Numerical Algorithms3 (1992), pp. 173-184. Zbl0783.65005MR1199365
  8. [8] Draux ( A.) .— Polynômes orthogonaux formels-Applications, LNM vol. 974, Springer- Verlag, Berlin (1983). Zbl0504.42001MR690769
  9. [9] Geronimus ( Ya L.) .— Polynomials orthogonal on a circle and interval, Pergamon Press, New-York (1960). Zbl0093.26503MR133642
  10. [10] Geronimus ( Ya L.). - Orthogonal polynomials, Transl., Ser. II, Am. Math. Soc.108 (1987), pp. 37-130. Zbl0373.42007
  11. [11] Van Iseghem ( J.) .— Vector orthogonal relations.Vector qd-algorithm, J. Comput. Appl. Math.19 (1987), pp. 141-150. Zbl0626.65013MR901223

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.