Représentation-* régulière des groupes de Lie compacts

Hamid Zahir

Annales de la Faculté des sciences de Toulouse : Mathématiques (1993)

  • Volume: 2, Issue: 1, page 117-139
  • ISSN: 0240-2963

How to cite

top

Zahir, Hamid. "Représentation-* régulière des groupes de Lie compacts." Annales de la Faculté des sciences de Toulouse : Mathématiques 2.1 (1993): 117-139. <http://eudml.org/doc/73310>.

@article{Zahir1993,
author = {Zahir, Hamid},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {-regular representations; coadjoint representations; semidirect products; compact Lie groups},
language = {fre},
number = {1},
pages = {117-139},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Représentation-* régulière des groupes de Lie compacts},
url = {http://eudml.org/doc/73310},
volume = {2},
year = {1993},
}

TY - JOUR
AU - Zahir, Hamid
TI - Représentation-* régulière des groupes de Lie compacts
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1993
PB - UNIVERSITE PAUL SABATIER
VL - 2
IS - 1
SP - 117
EP - 139
LA - fre
KW - -regular representations; coadjoint representations; semidirect products; compact Lie groups
UR - http://eudml.org/doc/73310
ER -

References

top
  1. [1] Arnal ( D.) et Cortet ( J.C.) .— *-product in the method of orbits for nilpotent groups, J. Geom. and Phys. Vol. 2, 2 (1985), pp. 85-116. Zbl0599.22012MR845469
  2. [2] Arnal ( D.) et Cortet ( J.C.) .— Représentations- * des groupes exponentiels, J. of Funct. anal. Vol. 92, 1 (1990), pp. 103-135. Zbl0726.22011MR1064689
  3. [3] Arnal ( D.) et Cortet ( J.C.) .— Star représentations of E(2), L.M.P20 (1990), pp. 141- 149. Zbl0726.22016MR1065242
  4. [4] Arnal ( D.), Cahen ( M.) et Gutt ( S.) .— Representation of compact Lie groups and Quantization by deformation, Acad. Royale de Belg. Bull. de la classe des Sc. 3ième série, t. LXXIV, 45 (1988), pp. 123-141. Zbl0681.58016MR1027456
  5. [5] Bayen ( F.) and al. .- Deformation theory and quantization I, IIAnn. of Physics111 (1978), pp. 61-110 et 111-151. Zbl0377.53024MR496157
  6. [6] Gutt ( S.) .— Some aspects of deformation theory and quatization, Actes du colloque "Quantum theory and Geometry" (M. Cahen et M. Flato éditeurs); Math. Phys. studies10 (1988), pp. 77-102. MR976866
  7. [7] Fronsdal ( C.) .— Remarks on quantization, Reports on Mathematical Physics15, n° 1 (1978), pp. 111-145. Zbl0418.58011MR551133
  8. [8] Gutt ( S.) .— An explicit *-product on the cotangent bundle to a Lie group, Lett. Math. Phy.7 (1983), pp. 249-258. Zbl0522.58019MR706215
  9. [9] Helgasson ( S.) .— Differential Geometry, Lie groups and symmetric spacesAcademic Press, New-York (1978). Zbl0451.53038MR514561
  10. [10] Lichnerowicz ( A.) . — Construction of twisted product for cotangent bundles of classical groups and Stiefel manifolds, L.M.P.2 (1977), pp. 133-143. Zbl0392.58019MR488140
  11. [11] Pontryagin ( L.S.) .— Topological groups, Edition Cordon and Breach. (1966). 
  12. [12] Warner ( G.) .— Harmonic analysis on semi-simple Lie groups I, Springer-VerlagBerlinHeidelberg, New-York (1972). Zbl0265.22020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.