Asymptotic stability for a homogeneous singularly perturbed system of differential equations with unbounded delay

Hristo Dimitrov Voulov; Drumi Dimitrov Bainov

Annales de la Faculté des sciences de Toulouse : Mathématiques (1993)

  • Volume: 2, Issue: 1, page 97-116
  • ISSN: 0240-2963

How to cite

top

Dimitrov Voulov, Hristo, and Dimitrov Bainov, Drumi. "Asymptotic stability for a homogeneous singularly perturbed system of differential equations with unbounded delay." Annales de la Faculté des sciences de Toulouse : Mathématiques 2.1 (1993): 97-116. <http://eudml.org/doc/73315>.

@article{DimitrovVoulov1993,
author = {Dimitrov Voulov, Hristo, Dimitrov Bainov, Drumi},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {equiasymptotic stability; homogeneous singularly perturbed system of differential equations with unbounded delay},
language = {eng},
number = {1},
pages = {97-116},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Asymptotic stability for a homogeneous singularly perturbed system of differential equations with unbounded delay},
url = {http://eudml.org/doc/73315},
volume = {2},
year = {1993},
}

TY - JOUR
AU - Dimitrov Voulov, Hristo
AU - Dimitrov Bainov, Drumi
TI - Asymptotic stability for a homogeneous singularly perturbed system of differential equations with unbounded delay
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1993
PB - UNIVERSITE PAUL SABATIER
VL - 2
IS - 1
SP - 97
EP - 116
LA - eng
KW - equiasymptotic stability; homogeneous singularly perturbed system of differential equations with unbounded delay
UR - http://eudml.org/doc/73315
ER -

References

top
  1. [1] Barnea ( B.I.) .— A method and new results for stability and instability of autonomous functional differential equations, SIAM J. Appl. Math.17 (1969), pp. 681-697. Zbl0181.10102MR254383
  2. [2] Cooke ( K.L.) .— The condition of regular degeneration for singularly perturbed linear differential-difference equations, J. Differential Equations1 (1965), pp. 39-94. Zbl0151.10303MR171977
  3. [3] Cooke ( K.L.) and Meyer ( K.R.) .— The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations, J. Math. Anal. Appl.14 (1966), pp. 83-106. Zbl0142.05802MR190489
  4. [4] Driver ( R.D.) .— Existence and stability of solutions of a delay-differential system, Arch. Rat Mech. Anal.10 (1962), pp. 401-426. Zbl0105.30401MR141863
  5. [5] Halanay ( A.) .— Singular perturbations of systems with retarded argument, Rev. Math. Pures Appl.7 (1962). Zbl0133.33503MR178208
  6. [6] Hale ( J.K.) and Kato ( J.) .— Phase space for retarded differential equations with infinite delay, Funk. Ekvac.21 (1978), pp. 11-41. Zbl0383.34055MR492721
  7. [7] Hoppensteadt ( F.C.) .— Singular perturbations on the infinite interval, Trans. Amer. Math. Soc.123 (1966), pp. 521-525. Zbl0151.12502MR194693
  8. [8] Kato ( J.) .— Stability problem in functional differential equations with infinite delay, Funk. Ekvac.21 (1978), pp. 63-80. Zbl0413.34076MR492740
  9. [9] Klimushev ( A.I.) .— On asymptotic stability of systems with after-effect containing a small parameter as coefficient of the derivative, Prikl. Mat. Meh.26 (1962), pp. 52-61. Translated as J. Appl. Math. Mech.26 (1962), pp. 68-81. Zbl0108.08402MR145154
  10. [10] Krasovskii ( N.N.) .— Some problems in the theory of stability of motion, Moscow, 1959. English translation by J. Brenner, Stanford, California, 1962. 
  11. [11] Lakshmikantham ( V.) and Leela ( S.) .— A unified approach to stability theory for differential equations with infinite delay, J. Int. Eqns10 (1985), pp. 147-156. Zbl0583.34058MR831241
  12. [12] Magalhaes ( L.T.) .— Convergence and boundary layers in singularly perturbed linear functional differential equations, J. Diff. Eqns54 (1984), pp. 295-309. Zbl0561.34060MR760374
  13. [13] Magalhaes ( L.T.) . — Exponential estimates for singularly perturbed functional differential equations, J. Math. Anal. Appl.103 (1984), pp. 443-460. Zbl0588.34052MR762568
  14. [14] Magalhaes ( L.T.) . — The asymptotics of solutions of singularly perturbed functional differential equations : distributed and concentrated delays are different, J. Math. Anal. Appl.105 (1985), pp. 250-257. Zbl0596.34051MR773586
  15. [15] Razumikhin ( B.S.) .— Application of Lyapunov's method to problems in the stability of systems with a delay, Automat. and Remote Control21 (1960), pp. 515-520. Zbl0114.04502
  16. [16] Rouche ( N.), Habets ( P.) and Laloy ( M.) .— Stability theory by Liapunov's direct method, Springer Verlag, 1977. Zbl0364.34022MR450715
  17. [17] Sawano ( K.) .— Exponentially asymptotic stability for functional differential equations with infinite retardations, Tohoku Math. J.31 (1979), pp. 363-382. Zbl0449.34053MR547651
  18. [18] Voulov ( H.D.) and Bainov ( D.D.) .— Asymptotic stability of singularly perturbed linear system with unbounded delay, Differential Equations : Qualitative Theory, Vol. I, II (Szeged, 1984), pp. 1097-1124. Colloq. Maht. Soc. Janos Bolyai, North Holland, 47 (1987). Zbl0622.34081MR890594
  19. [19] Voulov ( H.D.) and Bainov ( D.D.) .— On the asymptotic stability of differential equations with "maxima", Rend. Circ. Mat. Palermo, Serie II, Tomo XL (1991), pp. 385-420. Zbl0766.34054MR1174239

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.