Extension and Selection theorems in Topological spaces with a generalized convexity structure

Charles D. Horvath

Annales de la Faculté des sciences de Toulouse : Mathématiques (1993)

  • Volume: 2, Issue: 2, page 253-269
  • ISSN: 0240-2963

How to cite

top

Horvath, Charles D.. "Extension and Selection theorems in Topological spaces with a generalized convexity structure." Annales de la Faculté des sciences de Toulouse : Mathématiques 2.2 (1993): 253-269. <http://eudml.org/doc/73321>.

@article{Horvath1993,
author = {Horvath, Charles D.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {generalized convexity; Dugundji extension theorem; Michael selection theorem; Kakutani fixed point theorem},
language = {eng},
number = {2},
pages = {253-269},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Extension and Selection theorems in Topological spaces with a generalized convexity structure},
url = {http://eudml.org/doc/73321},
volume = {2},
year = {1993},
}

TY - JOUR
AU - Horvath, Charles D.
TI - Extension and Selection theorems in Topological spaces with a generalized convexity structure
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1993
PB - UNIVERSITE PAUL SABATIER
VL - 2
IS - 2
SP - 253
EP - 269
LA - eng
KW - generalized convexity; Dugundji extension theorem; Michael selection theorem; Kakutani fixed point theorem
UR - http://eudml.org/doc/73321
ER -

References

top
  1. [1] Aronszajn ( N.) and Panitchpakdi ( P.) .— Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math.6 (1956), pp. 405-439. Zbl0074.17802MR84762
  2. [2] Baillon ( J.-B.) .- Nonexpensive mapping and hyperconvex spacesContemp. Math72 (1988), pp. 11-19. Zbl0653.54021MR956475
  3. [3] Bardaro ( C.) and Ceppitelli ( R.) .- Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl.132 (1988), pp. 484-490. Zbl0667.49016MR943521
  4. [4] Bardaro ( C.) and Ceppitelli ( R.) .— Applications of the generalized Knaster-Kuratowski-Mazurkiewicz theorem to variational inequalities, J. Math. Anal. Appl. 137 (1989), pp 46-58. Zbl0681.49010MR981922
  5. [5] Browder ( F.E.) .- The fixed point theory of multi-valued mappings in topological vector spaces, Math. Annalen177 (1968), pp. 283-301. Zbl0176.45204MR229101
  6. [6] Cellina ( A.) .- Approximation of set valued functions and fixed point theorems, Ann. Mat. Pura Appl.82 (1969), pp. 17-24. Zbl0187.07701MR263046
  7. [7] Ding ( X.P.), Kim ( W.K.) and Tan ( K.K.) .— A new minimax inequality on H-spaces with applications, Bull. Austral. Math. Soc.41 (1990), pp. 457-473. Zbl0697.49008MR1071048
  8. [8] Ding ( X.P.) Kim ( W.K.) and Tan ( K.K.), .— Applications of a minimax inequality on H-spaces, Bull. Austral. Math. Soc.41 (1990), pp. 475-485. Zbl0697.49009MR1071049
  9. [9] Dugundji ( J.) .— An extension of Tietze's theorem, Pacific J. Math.1 (1951), pp. 353-369. Zbl0043.38105MR44116
  10. [10] Dugundji ( J.) .— Topology, Allyn and Bacon, Boston, 1966. Zbl0144.21501MR193606
  11. [11] De Groot ( J.) and Aarts ( J.M.) .— Complete regularity as a separation axiom, Canada J. Math.21 (1969), pp. 96-105. Zbl0176.51703MR236866
  12. [12] Horvath ( C.) . — Some results on multivalued mappings and inequalities without convexity, in nonlinear and convex analysis, (Ed. B. L. Lin and S. Simons), Lecture Notes in Pure and Appl. Math., Marcel Dekker (1987), pp. 99-106. Zbl0619.55002MR892785
  13. [13] Horvath ( C.) .- Contractibility and generalized convexity, J. Math. Ana. Appl.156, n° 2 (1991), pp. 341-357. Zbl0733.54011MR1103017
  14. [14] Michael ( E.) .- Continuous selections, Ann. Math.63 (1956), pp. 361-382. Zbl0071.15902MR77107
  15. [15] Sine ( R.) .— Hyperconvexity and Approximate Fixed points, Non linear Ana.13, n° 7 (1989), pp. 863-869. Zbl0694.54033MR999336
  16. [16] Van De Vel ( M.) .- Pseudo-boundaries and Pseudo-interiors for topological convexities, Dissertationes Mathematicae, CCX, WarszawaP.X.N. (1983). Zbl0528.52004MR695220
  17. [17] Van Mill ( J.) and Van De Vel ( M.) .— Convexity preserving mappings in subbase convexity theory, Proc. Kon. Ned. Acad. Wet.A81 (1977), pp. 76-90. Zbl0372.54023MR488568
  18. [18] Van Mill ( J.) and Van De Vel ( M.) .- Path connectedness, contractibility and LC-properties of superextensions, Bull. Acad. Polo. Sci. XXVI3 (1978), pp. 261-269. Zbl0437.54005MR503182

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.