Extension and Selection theorems in Topological spaces with a generalized convexity structure
Annales de la Faculté des sciences de Toulouse : Mathématiques (1993)
- Volume: 2, Issue: 2, page 253-269
- ISSN: 0240-2963
Access Full Article
topHow to cite
topHorvath, Charles D.. "Extension and Selection theorems in Topological spaces with a generalized convexity structure." Annales de la Faculté des sciences de Toulouse : Mathématiques 2.2 (1993): 253-269. <http://eudml.org/doc/73321>.
@article{Horvath1993,
author = {Horvath, Charles D.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {generalized convexity; Dugundji extension theorem; Michael selection theorem; Kakutani fixed point theorem},
language = {eng},
number = {2},
pages = {253-269},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Extension and Selection theorems in Topological spaces with a generalized convexity structure},
url = {http://eudml.org/doc/73321},
volume = {2},
year = {1993},
}
TY - JOUR
AU - Horvath, Charles D.
TI - Extension and Selection theorems in Topological spaces with a generalized convexity structure
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1993
PB - UNIVERSITE PAUL SABATIER
VL - 2
IS - 2
SP - 253
EP - 269
LA - eng
KW - generalized convexity; Dugundji extension theorem; Michael selection theorem; Kakutani fixed point theorem
UR - http://eudml.org/doc/73321
ER -
References
top- [1] Aronszajn ( N.) and Panitchpakdi ( P.) .— Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math.6 (1956), pp. 405-439. Zbl0074.17802MR84762
- [2] Baillon ( J.-B.) .- Nonexpensive mapping and hyperconvex spacesContemp. Math72 (1988), pp. 11-19. Zbl0653.54021MR956475
- [3] Bardaro ( C.) and Ceppitelli ( R.) .- Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities, J. Math. Anal. Appl.132 (1988), pp. 484-490. Zbl0667.49016MR943521
- [4] Bardaro ( C.) and Ceppitelli ( R.) .— Applications of the generalized Knaster-Kuratowski-Mazurkiewicz theorem to variational inequalities, J. Math. Anal. Appl. 137 (1989), pp 46-58. Zbl0681.49010MR981922
- [5] Browder ( F.E.) .- The fixed point theory of multi-valued mappings in topological vector spaces, Math. Annalen177 (1968), pp. 283-301. Zbl0176.45204MR229101
- [6] Cellina ( A.) .- Approximation of set valued functions and fixed point theorems, Ann. Mat. Pura Appl.82 (1969), pp. 17-24. Zbl0187.07701MR263046
- [7] Ding ( X.P.), Kim ( W.K.) and Tan ( K.K.) .— A new minimax inequality on H-spaces with applications, Bull. Austral. Math. Soc.41 (1990), pp. 457-473. Zbl0697.49008MR1071048
- [8] Ding ( X.P.) Kim ( W.K.) and Tan ( K.K.), .— Applications of a minimax inequality on H-spaces, Bull. Austral. Math. Soc.41 (1990), pp. 475-485. Zbl0697.49009MR1071049
- [9] Dugundji ( J.) .— An extension of Tietze's theorem, Pacific J. Math.1 (1951), pp. 353-369. Zbl0043.38105MR44116
- [10] Dugundji ( J.) .— Topology, Allyn and Bacon, Boston, 1966. Zbl0144.21501MR193606
- [11] De Groot ( J.) and Aarts ( J.M.) .— Complete regularity as a separation axiom, Canada J. Math.21 (1969), pp. 96-105. Zbl0176.51703MR236866
- [12] Horvath ( C.) . — Some results on multivalued mappings and inequalities without convexity, in nonlinear and convex analysis, (Ed. B. L. Lin and S. Simons), Lecture Notes in Pure and Appl. Math., Marcel Dekker (1987), pp. 99-106. Zbl0619.55002MR892785
- [13] Horvath ( C.) .- Contractibility and generalized convexity, J. Math. Ana. Appl.156, n° 2 (1991), pp. 341-357. Zbl0733.54011MR1103017
- [14] Michael ( E.) .- Continuous selections, Ann. Math.63 (1956), pp. 361-382. Zbl0071.15902MR77107
- [15] Sine ( R.) .— Hyperconvexity and Approximate Fixed points, Non linear Ana.13, n° 7 (1989), pp. 863-869. Zbl0694.54033MR999336
- [16] Van De Vel ( M.) .- Pseudo-boundaries and Pseudo-interiors for topological convexities, Dissertationes Mathematicae, CCX, WarszawaP.X.N. (1983). Zbl0528.52004MR695220
- [17] Van Mill ( J.) and Van De Vel ( M.) .— Convexity preserving mappings in subbase convexity theory, Proc. Kon. Ned. Acad. Wet.A81 (1977), pp. 76-90. Zbl0372.54023MR488568
- [18] Van Mill ( J.) and Van De Vel ( M.) .- Path connectedness, contractibility and LC-properties of superextensions, Bull. Acad. Polo. Sci. XXVI3 (1978), pp. 261-269. Zbl0437.54005MR503182
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.