Stochastic calculus, statistical asymptotics, Taylor strings and phyla
Ole E. Barndorff-Nielsen; Peter E. Jupp; Wilfrid S. Kendall
Annales de la Faculté des sciences de Toulouse : Mathématiques (1994)
- Volume: 3, Issue: 1, page 5-62
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBarndorff-Nielsen, Ole E., Jupp, Peter E., and Kendall, Wilfrid S.. "Stochastic calculus, statistical asymptotics, Taylor strings and phyla." Annales de la Faculté des sciences de Toulouse : Mathématiques 3.1 (1994): 5-62. <http://eudml.org/doc/73329>.
@article{Barndorff1994,
author = {Barndorff-Nielsen, Ole E., Jupp, Peter E., Kendall, Wilfrid S.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {computer algebra; connection; connection string; coordinate string; derivative string; differential string; invariant Taylor series; Ito calculus; phyla; phylon group; REDUCE; semi-holonomic jets; semimartingale; statistical asymptotics; string field; symbolic Ito calculus; survey; Taylor strings; second-order stochastic calculus; invariance considerations; statistical yokes; jet bundles; natural bundles; higher-order calculus},
language = {eng},
number = {1},
pages = {5-62},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Stochastic calculus, statistical asymptotics, Taylor strings and phyla},
url = {http://eudml.org/doc/73329},
volume = {3},
year = {1994},
}
TY - JOUR
AU - Barndorff-Nielsen, Ole E.
AU - Jupp, Peter E.
AU - Kendall, Wilfrid S.
TI - Stochastic calculus, statistical asymptotics, Taylor strings and phyla
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1994
PB - UNIVERSITE PAUL SABATIER
VL - 3
IS - 1
SP - 5
EP - 62
LA - eng
KW - computer algebra; connection; connection string; coordinate string; derivative string; differential string; invariant Taylor series; Ito calculus; phyla; phylon group; REDUCE; semi-holonomic jets; semimartingale; statistical asymptotics; string field; symbolic Ito calculus; survey; Taylor strings; second-order stochastic calculus; invariance considerations; statistical yokes; jet bundles; natural bundles; higher-order calculus
UR - http://eudml.org/doc/73329
ER -
References
top- [1] Amari ( S.-I.) .— Differential Geometric Methods in Statistics, Lecture Notes in Statistics28, Springer-Verlag, New York - Heidelberg - Berlin (1985). Zbl0559.62001MR788689
- [2] Amari ( S.-I.), Barndorff-Nielsen ( O.E.), Lauritzen ( S.L.) and Rao ( C.R.) . Differential Geometry in Statistical Inference, Lecture Notes-Monograph Series10, Institute of Mathematical Statistics, Hayward, Califormia - (1987). Zbl0694.62001MR932246
- [3] Ambrose ( W.), Palais ( R.S.) and Singer ( I.M.) .— Sprays, Anais Acad. Bras. de Ciências32 (1960), pp. 163-178. Zbl0097.37904MR126234
- [4] Andrews ( D.F.) and Stafford ( J.E.) .— Tools for the symbolic computation of asymptotic expansions, J. Roy. Statist. Soc.B55 (1993), pp. 613-627. Zbl0782.62021MR1223931
- [5] Antonelli ( P.L.), Chapin ( J.) and Voorhees ( B.H.) .— The geometry of random genetic drift VI: a random selection diffusion model, Adv. in Appl. Probab.12 (1980), pp. 50-58. Zbl0455.60067MR552946
- [6] Barndorff-Nielsen ( O.E.) .— On a formula for the distribution of the maximum likelihood estimator, Biometrika70 (1983), pp. 343-365. Zbl0532.62006MR712023
- [7] Barndorff-Nielsen ( O.E.) .— Strings, tensorial combinants, and Bartlett adjustments, Proc. Roy. Soc. LondonA406 (1986), pp. 127-137. Zbl0659.62040MR853685
- [8] Barndorff-Nielsen ( O.E.) . — Differential geometry and statistics: some mathematical aspects, Indian J. Math.29 (1987), pp. 335-350. Zbl0663.62013MR971645
- [9] Barndorff-Nielsen ( O.E.) .— Invited contribution to the discussion of R. E. Kass: The Geometry of Asymptotic Inference, Statist. Science4 (1989), pp. 222-227; Amendments in Statist. Science5 (1990), p. 370. MR1080958
- [10] Barndorff-Nielsen ( O.E.) and Blæsild ( P.) .— Strings: Mathematical theory and statistical examples, Proc. Roy. Soc. LondonA411 (1987), pp. 155-176. Zbl0624.53008MR895355
- [11] Barndorff-Nielsen ( O.E.) and Blæsild ( P.) .— Derivative strings: contravariant aspect, Proc. Roy. Soc. LondonA411 (1987), pp. 421-444. Zbl0679.53011MR897730
- [12] Barndorff-Nielsen ( O.E.) and Blæsild ( P.) .— Coordinate-free definition of structurally symmetric derivative strings, Adv. in Appl. Math.9 (1988), pp. 1-6. Zbl0654.58004MR930768
- [13] Barndorff-Nielsen ( O.E.), Blæsild ( P.), Carey ( A.L.), Jupp ( P.E.), Mora ( M.) and Murray ( M.K.) .— Finite-dimensional algebraic representations of the infinite phylon group, Acta Appl. Math.28 (1992), pp. 219-252. Zbl0761.53012MR1187593
- [14] Barndorff-Nielsen ( O.E.), Blæsild ( P.) and Mora ( M.) .— Derivative strings and higher order differentiation, Dept. of Theoretical Statistics, Institute of Mathematics, Univ. of Aarhus, Memoir no 11 (1988). MR1063264
- [15] Barndorff-Nielsen ( O.E.), Blæsild ( P.) and Mora ( M.) .— Generalized higher-order differentiation, Acta Appl. Math.16 (1989), pp. 243-259. Zbl0682.53018MR1024893
- [16] Barndorff-Nielsen ( O.E.), Cox ( D.R.) and Reid ( N.) .— The role of differential geometry in statistical theory, Internat. Statist. Rev.54 (1986), pp. 83-96. Zbl0587.62060MR959654
- [17] Blæsild ( P.) .— Yokes: Orthogonal and extended normal coordinates, Dept. of Theoretical Statistics, Institute of Mathematics, Univ. of Aarhus, Research Report n° 205 (1990).
- [18] Blæsild ( P.) . — Yokes and tensors derived from yokes, Ann. Inst. Statist. Math.43 (1991), pp. 95-113. Zbl0782.62007MR1105824
- [19] Blæsild ( P.) and Mora ( M.) .— Differential strings: basic theory, Exposition. Math.10 (1991), pp. 249-273. Zbl0752.53012MR1175532
- [20] Bowman ( R.H.) .— On differentiable extensions, Tensor (N.S.)21 (1970), pp. 139-150. Zbl0172.23402MR257908
- [21] Carey ( A.L.) and Murray ( M.K.) .— Higher-order tensors, strings and new tensors, Proc. Roy. Soc. LondonA430 (1990), pp. 423-432. Zbl0712.53013MR1068306
- [22] Craig ( H.V.) .— Vector and Tensor Analysis, McGraw-Hill, New York (1943). Zbl0063.01012MR8937
- [23] Critchley ( F.), Marriott ( P.K.) and Salmon ( M.H.) .— Preferred point geometry and statistical manifolds, Ann. Statist. (to appear). Zbl0798.62009MR1241265
- [24] Dekrét ( A.) .— On quasi-jets, Gas. Pest. Mat.111 (1986), pp. 345-352. Zbl0611.58004
- [25] Dellacherie ( C.) and Meyer ( P.-A.) .— Probabilities and Potential A, North-Holland, Amsterdam (1978). Zbl0494.60001MR521810
- [26] Dellacherie ( C.) and Meyer ( P.-A.) .— Probabilities and Potential B, North-Holland, Amsterdam (1982). Zbl0494.60002MR745449
- [27] Dellacherie ( C.) and Meyer ( P.-A.) .— Probabilities and Potential C, North-Holland, Amsterdam (1988). Zbl0716.60001MR939365
- [28] Ehresmann ( C.) .— Les prolongements d'une variété différentiable. I. Calcul des jets, prolongement principal, C.R. Acad. Sci.Paris239 (1951), pp. 598-600. Zbl0043.17401MR44198
- [29] Ehresmann ( C.) .— Extension du calcul des jets aux jets non holonomes, C.R. Acad. Sci.Paris239 (1954), pp. 1762-1764. Zbl0057.15603MR66734
- [30] Emery ( M.) . — Stochastic Calculus in Manifolds (with an appendix by P.-A. Meyer), Springer-Verlag, New York - Heidelberg - Berlin (1989). Zbl0697.60060MR1030543
- [31] Epstein ( D.B.A.) and Thurston ( W.P.) .— Transformation groups and natural bundles, Proc. London Math. Soc.38 (1979), pp. 219-236. Zbl0409.58001MR531161
- [32] Foster ( B.L.) .— Differentiation on manifolds without a connection, Michigan Math. J.5 (1958), pp. 183-190. Zbl0102.37202MR102833
- [33] Foster ( B.L.) . — Some remarks on tensor differentiation, Ann. Mat. Pura Appl.54 (1961), pp. 143-146. Zbl0107.38501MR137067
- [34] Foster ( B.L.) .— Would Leibniz lie to you? (Three aspects of the affine connection), Math. Intelligencer8 (1986), pp. 34-40, 57. Zbl0596.01038MR846993
- [35] Foster ( B.L.) . — Higher derivatives in geometry and physics, Proc. Roy. Soc. LondonA423 (1989), pp. 443-455. Zbl0682.53086MR1007548
- [36] Ikeda ( N.) and Watanabe ( S.) . — Stochastic Differential Equations and Diffusion Processes, North-Holland and Kodansha, Amsterdam and Tokyo (1981). Zbl0495.60005MR637061
- [37] Itô ( K.) .— Stochastic differentials, Appl. Math. Optim.1 (1965), pp. 374-381. Zbl0325.60057MR388538
- [38] Jupp ( P.E.) .— Derivative strings, differential strings, and semi-holonomic jets, Proc. Roy. Soc. LondonA436 (1992), pp. 89-98. Zbl0747.58007MR1177123
- [39] Kass ( R.E.) . — The geometry of asymptotic inference (with discussion), Statist. Science4 (1989), pp. 188-234. Zbl0955.62513MR1015274
- [40] Kendall ( W.S.) .— Computer algebra, Brownian motion, and the statistics of shape, Geometrization of Statistical Theory, Proceedings, GST Workshop, Univ. of Lancaster (28-31 Oct. 1987); C.T.J. Dodson ed., Univ. of Lancaster, ULDM Publications, pp. 171-192. MR973708
- [41] Kendall ( W.S.) . — Stochastic differential geometry: an introduction, Acta Appl. Math.9 (1987), pp. 29-60. Zbl0629.60087MR900255
- [42] Kendall ( W.S.) .— Symbolic computation and the diffusion of shapes of triads, Adv. in Appl. Probab.20 (1988), pp. 775-797. Zbl0661.60066MR967998
- [43] Kendall ( W.S.) .— Martingales on manifolds and harmonic maps, The Geometry of Random Motion, R. Durrett & M. Pinsky eds., American Mathematical Society, Providence, RI (1988), pp. 121-157 (but see Huang and Kendall, 1991). Zbl0673.58052
- [44] Kendall ( W.S.) . — Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence, Proc. London Math. Soc.61 (1990), pp. 371-406. Zbl0675.58042MR1063050
- [45] Kendall ( W.S.) .— Computer algebra and stochastic calculus, Notices Amer. Math. Soc.37 (1990), pp. 1254-1256.
- [46] Kendall ( W.S.) .— Diffusion of Euclidean shape, Disorder in Physical Systems, G. Grimmett & D. Welsh eds., Oxford Univ. Press, Oxford (1990), pp. 203-217. Zbl0717.60065
- [47] Kendall ( W.S.) .— Symbolic Itô calculus: an introduction, Probabilités Numériques, N. Bouleau & D. Talay eds., INRIA, Rocquencourt, France (1991), pp. 186-192.
- [48] Kendall ( W.S.) .— Statistical asymptotics using the computer package "REDUCE", Warwick Univ. Dept. of Statistics, Research Report in preparation.
- [49] Kendal ( W.S.) .— A remark on the proof of Itô's formula for C2 functions of continuous semimartingales, J. Appl. Probab.29 (1992), pp. 216-221. Zbl0760.60055MR1147783
- [50] Kobayashi ( S.) .— Canonical forms on vector bundles of higher order contact, Proc. Symp. Pure Math.3 (1961), pp. 186-193. Zbl0109.40601MR126810
- [51] Mccullagh ( P.) .— Tensor Methods in Statistics, Chapman and Hall, London (1987). Zbl0732.62003MR907286
- [52] Mccullagh ( P.) and Cox ( D.R.) .— Invariants and likelihood ratio statistics, Ann. Statist.14 (1986), pp. 1419-1430. Zbl0615.62041MR868309
- [53] Meyer ( P.-A.) .— A differential geometric formalism for the Itô integral, Stochastic Integrals (Proc. Durham 1980), D. Williams ed., Lect. Notes in Math.851, Springer-Verlag, New York - Heidelberg - Berlin (1981), pp. 256-270. Zbl0457.60031MR620993
- [54] Meyer ( P.-A.) .— Géométrie stochastique sans larmes, Sém. Probab. XV, Lect. Notes in Math850, Springer-Verlag, New York - Heidelberg - Berlin (1981), pp. 44-102. Zbl0459.60046MR622555
- [55] Meyer ( P.-A.) .— Qu'est-ce qu'une différentielle d'ordre n ?Exposition. Math.7 (1989), pp. 249-264. Zbl0688.60041MR1007886
- [56] Mora ( M.) .— Geometrical expansions for the distributions of the score vector and the maximum likelihood estimator, Ann. Inst. Statist. Math.44 (1992), pp. 63-83. Zbl0760.62020MR1165572
- [57] Murray ( M.K.) . — Coordinate systems and Taylor series in statistics, Proc. Roy. Soc. LondonA415 (1988), pp. 445-452. Zbl0683.62009MR932928
- [58] Palais ( R.S.) and Terng ( C.L.) .— Natural vector bundles have finite order, Topology16 (1977), pp. 271-277. Zbl0359.58004MR467787
- [59] Protter ( P.) .— Stochastic Integration and Differential Equations, a new approach, Springer-Verlag, New York - Heidelberg - Berlin (1990). Zbl0694.60047MR1037262
- [60] Revuz ( D.) and Yor ( M.) . — Continuous Martingales and Brownian Motion, Springer-Verlag, New York - Heidelberg - Berlin (1991). Zbl0731.60002MR1083357
- [61] Rogers ( L.C.G.) and Williams ( D.) .— Diffusions, Markov Processes, and Martingales Vol. II: Itô calculus, Wiley, Chichester (1987). Zbl0627.60001MR921238
- [62] Saunders ( D.J.) . — The Geometry of Jet Bundles, London Mathematical Society Lecture Notes142, Cambridge University Press, Cambridge (1989). Zbl0665.58002MR989588
- [63] Schwartz ( L.) .— Géométrie différentielle du deuxième ordre, semi-martingales et équations différentielles stochastiques sur une variété différentielle, Sém. Probab. XVI (supplément : géométrie différentielle stochastique), Lect. Notes in Math.921, Springer-Verlag, New York - Heidelberg - Berlin, (1982), pp. 1-150. Zbl0482.58034MR658722
- [64] Schwartz ( L.) .— Semimartingales and their Stochastic Calculus on Manifolds, Les Presses de l'Université de Montréal, Montréal (1984). Zbl0539.60050MR750655
- [65] Synge ( J.-L.) and Schild ( A.) .— Tensor Calculus, Mathematical Expositions5, University of Toronto Press, Toronto (1949). Zbl0038.32301MR33165
- [66] Terng ( C.-L.) . — Natural vector bundles and natural diffential operators, Amer. J. Math.100 (1978), pp. 775-828. Zbl0422.58001MR509074
- [67] White ( J.E.) .— The Method of Iterated Tangents with Applications in Local Riemannian Geometry, Monographs and Studies in Mathematics13, Pitman, Boston, (1982). Zbl0478.58002MR693620
- [68] Yuen ( P.C.) .— Higher order frames and linear connections, Cahiers Topologie Géom. Différentielle12 (1971), pp. 333-374. Zbl0222.53033MR307102
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.