H∞-extensibility and finite proper holomorphic surjections

Tran Ngoc Giao

Annales de la Faculté des sciences de Toulouse : Mathématiques (1994)

  • Volume: 3, Issue: 2, page 293-303
  • ISSN: 0240-2963

How to cite

top

Ngoc Giao, Tran. "H∞-extensibility and finite proper holomorphic surjections." Annales de la Faculté des sciences de Toulouse : Mathématiques 3.2 (1994): 293-303. <http://eudml.org/doc/73336>.

@article{NgocGiao1994,
author = {Ngoc Giao, Tran},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Gateaux holomorphic extension; finite proper holomorphic surjection; holomorphic -extension property; compact analytic set of positive dimension; Riemann domain; holomorphic outside a hypersurface},
language = {eng},
number = {2},
pages = {293-303},
publisher = {UNIVERSITE PAUL SABATIER},
title = {H∞-extensibility and finite proper holomorphic surjections},
url = {http://eudml.org/doc/73336},
volume = {3},
year = {1994},
}

TY - JOUR
AU - Ngoc Giao, Tran
TI - H∞-extensibility and finite proper holomorphic surjections
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1994
PB - UNIVERSITE PAUL SABATIER
VL - 3
IS - 2
SP - 293
EP - 303
LA - eng
KW - Gateaux holomorphic extension; finite proper holomorphic surjection; holomorphic -extension property; compact analytic set of positive dimension; Riemann domain; holomorphic outside a hypersurface
UR - http://eudml.org/doc/73336
ER -

References

top
  1. [1] Douady ( A.) .— Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier, Grenoble, 16, n° 1 (1966), pp. 1-95. Zbl0146.31103MR203082
  2. [2] Fischer ( G.) . — Complex Analytic Geometry, Springer Verlag, Berlin, Lecture Notes in Math.538 (1976). Zbl0343.32002MR430286
  3. [3] Hirschowitz ( A.) .— Domaines de Stein et fonctions holomorphes bornées, Math. Ann.213 (1975), pp. 185-193. Zbl0284.32011MR393563
  4. [4] Khue ( N.V.) and Tac ( B.D.) .— Extending holomorphic maps in infinite dimensions, Studia Math.45 (1990), pp. 263-272. Zbl0752.46029MR1060729
  5. [5] Ransford ( T.J.) .— Open mapping, inversion and implicit function theorems for analytic multivalued functions, Proc. London Math. Soc. (3), 49 (1984), pp. 537-562. Zbl0526.46045MR759303
  6. [6] Sibony ( N.) .— Prolongement des fonctions holomorphes bornées et métriques de Carathéodory, Invent. Math.29 (1975), pp. 205-230. Zbl0333.32011MR385164
  7. [7] Slodkowski ( Z.) .— Analytic set-valued functions and spectra, Math. Ann.256 (1981), pp. 363-386. Zbl0452.46028MR626955

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.