Global stability of saddle-node bifurcation of a periodic orbit for vector fields

S. Sergio Plaza

Annales de la Faculté des sciences de Toulouse : Mathématiques (1994)

  • Volume: 3, Issue: 3, page 411-448
  • ISSN: 0240-2963

How to cite

top

Sergio Plaza, S.. "Global stability of saddle-node bifurcation of a periodic orbit for vector fields." Annales de la Faculté des sciences de Toulouse : Mathématiques 3.3 (1994): 411-448. <http://eudml.org/doc/73342>.

@article{SergioPlaza1994,
author = {Sergio Plaza, S.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {saddle-node periodic orbit; one-parameter families of vector fields; bifurcations; stability; modulus of stability},
language = {eng},
number = {3},
pages = {411-448},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Global stability of saddle-node bifurcation of a periodic orbit for vector fields},
url = {http://eudml.org/doc/73342},
volume = {3},
year = {1994},
}

TY - JOUR
AU - Sergio Plaza, S.
TI - Global stability of saddle-node bifurcation of a periodic orbit for vector fields
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1994
PB - UNIVERSITE PAUL SABATIER
VL - 3
IS - 3
SP - 411
EP - 448
LA - eng
KW - saddle-node periodic orbit; one-parameter families of vector fields; bifurcations; stability; modulus of stability
UR - http://eudml.org/doc/73342
ER -

References

top
  1. [1] De Melo ( W.), Palis ( J.) and Van Strien ( S.) .— Caracterising diffeomorphisms with modulus of stability one, Lectures Notes in Math.898 (1981), pp. 226-285. Zbl0482.58022
  2. [2] De Melo ( W.) and Palis ( J.) .— Moduli of stability for diffeomorphisms, Lectures Notes in Math.819 (1980), pp. 315-339. Zbl0445.58020MR591192
  3. [3] Hirsch ( M.), Pugh ( C.) and Shub ( M.) .— Invariant Manifolds, Lectures Notes in Math., Springer Verlag, 583 (1977). Zbl0355.58009MR501173
  4. [4] Labarca ( R.) .— Stability of parametrized families of vector fields, Dynamical Systems and Bifurcations Theory, Eds M. I. Camacho, M. J. Pacífico & F. Takens, Pitman Research Notes in Math., Serie 160 (1987), pp. 121-213. Zbl0632.58026
  5. [5] Labarca ( R.) and Pacífico ( M.J.) .— Stability of Morse-Smale vector fields on n-manifolds with boundary, Preprint U.F.R.J., Brazil (1988). MR1046625
  6. [6] Malta ( I.P.) and Palis ( J.) .— Families of Vector fields with finite modulus of Stability, Lectures Notes in Math.898 (1980), pp. 212-229. Zbl0482.58023MR654891
  7. [7] Moeckel ( R.) .— Spiralling invariant manifold, J. Diff. Eq.66 (1987), pp. 189-207. Zbl0634.58016MR871994
  8. [8] Newhouse ( S.), Palis ( J.) and Takens ( F.) .— Bifurcation and Stability of Families of Diffeomorphisms, Publ. Math. I.H.E.S.57 (1983), pp. 5-71. Zbl0518.58031MR699057
  9. [9] Palis ( J.) and Takens ( F.) .— Stability of Parametrized families of gradient vector fields, Annals of Math.118 (1983), pp. 383-421. Zbl0533.58018MR727698
  10. [10] Takens ( F.) . — Moduli and Bifurcations, non- transversal intersections of invariant manifold of vector fields, Lectures Notes in Math.799 (1980), pp. 368-384. Zbl0473.58018MR585498
  11. [11] Takens ( F.) .— Global phenomena in bifurcations of dynamical systems with simple recurrence, Jber. der. Dentsche Math. Verein 81 (1979), pp. 81-96. Zbl0419.58012MR535099
  12. [12] Takens ( F.) .— Normal Forms for Certain Singularities of Vector Fields, Ann. Inst. Fourier23, n° 2 (1973), pp. 163-195. Zbl0266.34046MR365620
  13. [13] Van Strien ( S.) .— One parameter families of vector fields. Bifurcations near saddle connection, Ph. D. Thesis, Utrecht (1982). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.