The support shrinking properties for solutions of quasilinear parabolic equations with strong absorption terms

Stanislav Antontsev; Jesus Ildefonso Díaz; Serguei I. Shmarev

Annales de la Faculté des sciences de Toulouse : Mathématiques (1995)

  • Volume: 4, Issue: 1, page 5-30
  • ISSN: 0240-2963

How to cite

top

Antontsev, Stanislav, Ildefonso Díaz, Jesus, and Shmarev, Serguei I.. "The support shrinking properties for solutions of quasilinear parabolic equations with strong absorption terms." Annales de la Faculté des sciences de Toulouse : Mathématiques 4.1 (1995): 5-30. <http://eudml.org/doc/73344>.

@article{Antontsev1995,
author = {Antontsev, Stanislav, Ildefonso Díaz, Jesus, Shmarev, Serguei I.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {support shrinking; dead cores; differential inequalities},
language = {eng},
number = {1},
pages = {5-30},
publisher = {UNIVERSITE PAUL SABATIER},
title = {The support shrinking properties for solutions of quasilinear parabolic equations with strong absorption terms},
url = {http://eudml.org/doc/73344},
volume = {4},
year = {1995},
}

TY - JOUR
AU - Antontsev, Stanislav
AU - Ildefonso Díaz, Jesus
AU - Shmarev, Serguei I.
TI - The support shrinking properties for solutions of quasilinear parabolic equations with strong absorption terms
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1995
PB - UNIVERSITE PAUL SABATIER
VL - 4
IS - 1
SP - 5
EP - 30
LA - eng
KW - support shrinking; dead cores; differential inequalities
UR - http://eudml.org/doc/73344
ER -

References

top
  1. [1] Alt ( H.W.) and Luckhaus ( S.) .— Quasilinear elliptic-parabolic differential equations, Math. Z.183 (1983), pp. 311-341. Zbl0497.35049MR706391
  2. [2] Antontsev ( S.N.) .— On the localization of solutions of nonlinear degenerate elliptic and parabolic equations, Dokl. Akad. Nauk. SSSR, 260, No 6 (1981), pp. 1289-1293 (in Russian; English translation in Soviet Math. Dokl., 24, No 2 (1981), pp. 420-424). Zbl0496.35051MR636152
  3. [3] Antotsev ( S.N.), Díaz ( J.I.) and Shmarev ( S.I.) .— New applications of energy methods to parabolic free boundary problems, Uspekhi Mat. Nauk, 46, issue 6 (282) (1991), pp. 181-182 (in Russian; English translation: in Russian Mathematical Surveys, 46, No 6 (1991), pp. 193-194). 
  4. [4] Antontsev ( S.N.), Díaz ( J.I.) and Shmarev ( S.I.) .— New results of the character of localization of solutions for elliptic and parabolic equations, Birkhäuser-Verlag, International Series of Numerical Mathematics106 (1992), pp. 59-66. MR1229526
  5. [5] Antontsev ( S.N.) and Shmarev ( S.I.) .— Localization of solutions of nonlinear parabolic equations with linear sources of general type, Dinamica Sploshnoi Sredy, Novosibirsk89 (1989), pp. 28-42. Zbl0726.35020MR1103219
  6. [6] Antontsev ( S.N.) and Shmarev ( S.I.) .— Local energy method and vanishing of weak solutions of nonlinear parabolic equations, Dokl. Akad, Nauk SSSR, 318, No 4 (1991), pp. 777-781 (in Russian; English translation: in Soviet Math. Doklady43 (1991)). Zbl0772.35025MR1127261
  7. [7] Antontsev ( S.N.) and Shmarev ( S.I.) .— Local energy method and vanishing properties of weak solutions of quasilinear parabolic equations. In Free boundary problems involving solids, J. Chadam and H. Rasmussen eds., Pitman Res. Notes in Math. Ser., 281, Longman (1993), pp. 2-5. Zbl0831.35083MR1216393
  8. [8] Bandle ( C.) and Stakgold ( I.) .— The formation of the dead core in parabolic reaction-diffusion problems, Trans. Amer. Math. Soc.286 (1984), pp. 275-293. Zbl0519.35042MR756040
  9. [9] Bernis ( F.) .— Existence results for double nonlinear higher order parabolic equations on unbounded domains, Math Annalen279 (1988), pp. 373-394. Zbl0609.35048MR922422
  10. [10] Díaz ( J.I.) and Hernández ( J.) .— Some results on the existence of free boundaries for parabolic reaction-diffusion systems, In Trends in theory and pratice of nonlinear differential equations, V. Lakshmikkantham ed., Marcel Dekker (1984), pp. 149-156. Zbl0533.35055MR741498
  11. [11] Díaz ( J.I.) and Hernández ( J.) .— Qualitative properties of free boundaries for some nonlinear degerenate parabolic equations. In Nonlinear parabolic equations: qualitative properties of solutions, L. Boccardo and A. Tesei eds., Pitman149 (1987), pp. 85-93. Zbl0643.35056MR901095
  12. [12] Díaz ( J.I.) and De Thélin ( F.) .— On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math.25, No 4 (1994), pp. 1085-1111. Zbl0808.35066MR1278892
  13. [13] Díaz ( J.I.) and Veron ( L.) .— Local vanishing properties of solutions of elliptic and parabolic quasilinear equations, Trans. Amer. Math. Soc.290, No 2 (1985), pp. 787-814. Zbl0579.35003MR792828
  14. [14] Evans ( L.C.) and Knerr ( B.) .— Instantaneous shrinking of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities, Illinois J. Math., 23 (1979), pp. 153-166. Zbl0403.35052MR516577
  15. [15] Galaktionov ( V.A.) and Vazquez ( J.L.) .— Extinction for a quasilinear heat equation with absorption II, A dynamical systems approach, to appear Zbl0831.35074MR1284803
  16. [16] Gilding ( B.) and Kersner ( R.) .— The characterization of reaction-convection-diffusion processes by travelling waves, Faculty of Applied Mathematics, University of Twente, Memorandum1111 (1993). 
  17. [17] Kačur ( J.) . — On a solution of degenerate elliptic-parabolic systems in Orlicz-Sobolev spacesII, Math. Z.203 (1990), pp. 569-579. Zbl0659.35045MR1044065
  18. [18] Kalashnikov ( A.S.) .— Some questions of the qualitative theory of nonlinear degenerate second-order parabolic equations, Russian Math Surveys42, No 2 (1987), pp. 169-222. Zbl0642.35047MR898624
  19. [19] Kersner ( R.) .— On the behavior of temperature fronts in nonlinear heat-conductive media with absorption, Vestnik MGU, Ser. 1, Mathematics and Mechanics, 5 (1978), pp. 44-51. Zbl0396.35052MR516020
  20. [20] Kersner ( R.) .- Nonlinear heat conduction with absorption: space localization and extinction in finite time, SIAM J. Appl. Math.43 (1983), pp. 1274-1285. Zbl0536.35039MR722941
  21. [21] Palimskii ( I.) . — Some qualitative properties of solutions of equations of nonlinear heat conductivity with absorption, Chislennye Metody Mekhaniki Sploshnoi Sredy, Novosibirsk16, No 1 (1985), pp. 136-145 (in Russian). Zbl0579.35039MR876771
  22. [22] Samarsky ( A.A.), Galaktionov ( V.A.), Kurdumov ( S.P.) and Mikhaylov ( A.M.) .— Blowup in Problems for Quasilinear Parabolic Problems, Nauka, Moscow (1987) (in Russian; English translation: Walter de Gruyter, Berlin, to appear). 
  23. [23] Shmarev ( S.I.) .— Local properties of solutions of nonlinear equation of heat conduction with absorption, Dinamika Sploshnoi Sredy, Novosibirsk95 (1990), pp. 28-42 (in Russian). Zbl0726.35020MR1175705
  24. [24] Shmarev ( S.I.) . — The effect of support shrinking for solutions of a degenerate parabolic equation, Dinamica Sploshnoi Sredy97 (1990), pp. 194-200 (in Russian). Zbl0745.35023MR1175301

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.