A hitting time for Lévy processes, with application to dams and branching processes
Annales de la Faculté des sciences de Toulouse : Mathématiques (1996)
- Volume: 5, Issue: 3, page 521-544
- ISSN: 0240-2963
Access Full Article
topHow to cite
topPakes, Anthony G.. "A hitting time for Lévy processes, with application to dams and branching processes." Annales de la Faculté des sciences de Toulouse : Mathématiques 5.3 (1996): 521-544. <http://eudml.org/doc/73393>.
@article{Pakes1996,
author = {Pakes, Anthony G.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Lévy process; subordinator; hitting time density; dams; branching processes; exponential families; limit theorems},
language = {eng},
number = {3},
pages = {521-544},
publisher = {UNIVERSITE PAUL SABATIER},
title = {A hitting time for Lévy processes, with application to dams and branching processes},
url = {http://eudml.org/doc/73393},
volume = {5},
year = {1996},
}
TY - JOUR
AU - Pakes, Anthony G.
TI - A hitting time for Lévy processes, with application to dams and branching processes
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1996
PB - UNIVERSITE PAUL SABATIER
VL - 5
IS - 3
SP - 521
EP - 544
LA - eng
KW - Lévy process; subordinator; hitting time density; dams; branching processes; exponential families; limit theorems
UR - http://eudml.org/doc/73393
ER -
References
top- [1] Bingham ( N.H.) .— Fluctuation theory in continuous time, Adv. Appl. Prob.7 (1975), pp. 705-766. Zbl0322.60068MR386027
- [2] Bingham ( N.H.) .— Continuous branching processes and spectral positivity, Stoch. Processes Appl.4 (1976), pp. 217-242. Zbl0338.60051MR410961
- [3] Bingham ( N.H.) .— The work of Lajos Takács on probability theory. J. Appl. Prob.31A (1994), pp. 29-39. Zbl0809.60001MR1274715
- [4] Bingham ( N.H.), Goldie ( C.M.) and Teugels ( J.F.) .— Regular Variation, C.U.P., Cambridge (1987). Zbl0617.26001MR898871
- [5] Bondesson ( L.) . — Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statistics, Springer-Verlag, New York, 76 (1992). Zbl0756.60015MR1224674
- [6] Borovkov ( A.A.) .— On the first passage time for one class of processes with independent increments, Theor. Prob. Appl.10 (1965), pp. 331-334. Zbl0146.38001MR182052
- [7] Borovkov ( A.A.) .— Stochastic Processes in Queueing Theory, Springer-Verlag, New York (1976). Zbl0319.60057MR391297
- [8] Consul ( P.C.) and Shenton ( L.R.) .— Some interesting properties of Lagrangian distributions, Comm. Statist.2 (1973), pp. 263-272. Zbl0267.60010MR408069
- [9] Devroye ( L.) .— A note on Linnik's distribution, Statist. Prob. Lett.9 (1990), pp. 305-306. Zbl0698.60019MR1047827
- [10] Devroye ( L.) .— The branching process method in Lagrange random variate generation, Comm. Statist. Simula.21 (1992), pp. 1-14. Zbl0825.65003
- [11] Feller ( W.) . — Probability Theory and its Applications, Wiley, New York, 2nd ed., 2 (1971).
- [12] Fristedt ( B.) .— Sample functions of stochastic processes with stationary, independent increments, In: P. E. Ney and S. Port eds, Advances in Probability, Dekker, New York, 5 (1974), pp. 241-396. Zbl0309.60047MR400406
- [13] Gani ( J.) and Prabhu ( N.U.) .— A storage model with continuous infinitely divisible inputs, Proc. Camb. Phil. Soc.59 (1963), pp. 417-429. Zbl0199.23201MR146906
- [14] Gihman ( I.I.) and Skorohod ( A.V.) .— The Theory of Stochastic Processes II, Springer-Verlag, Berlin (1975). Zbl0305.60027MR375463
- [15] Harrison ( J.M.) .— The supremum distribution of a Lévy process with no negative jumps, Adv. Appl. Prob.9 (1977), pp. 417-422. Zbl0366.60056MR445619
- [16] Hasofer ( A.M.) .— On the distribution of the time to first emptiness of a store with stochastic input, J. Aust. Math. Soc.4 (1964), pp. 506-517. Zbl0146.41301MR177461
- [17] Hougaard ( P.) . — Survival models for heterogeneous populations derived from stable distributions, Biometrika73 (1986), pp. 387-396. Zbl0603.62015MR855898
- [18] Ibragimov ( I.A.) and Linnik Yu ( V.) .— Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen (1971). Zbl0219.60027MR322926
- [19] Johnson ( N.L.), Kotz ( S.) and Kemp ( A.W.) .— Univariate Discrete Distributions, Wiley, New York, 2nd ed. (1993). Zbl0773.62007MR1224449
- [20] Kallenberg ( P.J.M.) .— Branching Processes with Continuous State Space, Math. Centrum, Amsterdam (1979). Zbl0409.60076MR548465
- [21] Keilson ( J.) . — The first passage time density for homogeneous skipfree walks on the continuum, Ann. Math. Statist.34 (1963), pp. 1003-1011. Zbl0113.33501MR153060
- [22] Kendall ( D.G.) .— Some problems in the theory of dams, J. Roy. Statist. Soc. Ser. B. 19 (1957), pp. 207-212. Zbl0118.35502MR92290
- [23] Kingman ( J.F.C.) .— On continuous time models in the theory of dams, J. Aust. Math. Soc.3 (1963), pp. 480-487. Zbl0217.50604MR163372
- [24] Letac ( G.) and Mora ( M.) .— Natural real exponential families with cubic variance functions, Ann. Statist.18 (1990), pp. 1-37. Zbl0714.62010MR1041384
- [25] Moran ( P.A.P.) .— An Introduction to Probability Theory, Clarendon Press, Oxford (1968). Zbl0169.48602MR247636
- [26] Otter ( R.) .— The multiplicative process, Ann. Math. Statist.20 (1949), pp. 206-224. Zbl0033.38301MR30716
- [27] Pakes ( A.G.) .— Some limit theorems for continuous-state branching processes, J. Aust. Math. Soc. Ser. A. 44 (1988), pp. 71-87. Zbl0638.60089MR914405
- [28] Pakes ( A.G.) and Speed ( T.P.) .— Lagrange distributions and their limit theorems, SIAM J. Appl. Math.32 (1977), pp. 745-754. Zbl0358.60033MR433559
- [29] Prabhu ( N.U.) .— Stochastic Storage Processes, Springer-Verlag, New York (1980). Zbl0453.60094MR602329
- [30] Prabhu ( N.U.) and Rubinovitch ( M.) .— On a regenerative phenomenon occurring in a storage model, J. Roy. Statist. Soc. Ser. B. 32 (1970), pp. 354-361. Zbl0218.60083MR312606
- [31] Rogers ( L.C.G.) . — The two-sided exit problem for spectrally positive Lévy processes, Adv. Appl. Prob.22 (1990), pp. 486-487. Zbl0698.60063MR1053243
- [32] Rosinski ( J.) .— On a class of infinitely divisible processes represented as mixtures of Gaussian processes, In: S. Cambanis, G. Samarodnitsky et M. Taqqu, eds, Stable Processes and Related Topics, Birkäuser, Boston (1991), pp. 27-41. Zbl0727.60020MR1119350
- [33] Seshadri ( V.) .— Inverse-Gaussian Distributions: A Case Study in Natural Exponential Families, Clarendon Press, Oxford (1993). MR1306281
- [34] Shtatland ( E.S.) .- On local properties of processes with independent increments, Theor. Prob. Appl.10 (1965), pp. 317-322. Zbl0146.38002
- [35] Skorohod ( A.V.) .- Random Processes with Independent Increments, Kluwer Academic Publishers, Dordrecht (1991). Zbl0732.60081MR1155400
- [36] Stone ( C.) .— Ratio limit theorems for random walks on groups, Trans. Amer. Math. Soc.125 (1966), pp. 86-100. Zbl0168.38501MR217887
- [37] Takács ( L.) . — The distribution of the content of a dam when the input process has stationary independent increments, J. Math. Mech.15 (1966), pp. 101-112. Zbl0146.41205MR207065
- [38] Takács ( L.) .— Combinatorial Methods in the Theory of Stochastic Processes, Wiley, New York (1967). Zbl0162.21303MR217858
- [39] Wendel ( J.G.) .— Left-continuous random walk and the Lagrange expansion, Amer. Math. Monthly82 (1975), pp. 494-499. Zbl0304.60040MR381000
- [40] Zolotarev ( V.M.) .- A duality law in the class of infinitely divisible laws. English translation in Sel, Trans. Math. Statist. Prob.5 (1961), pp. 201-209. MR137144
- [41] Zolotarev ( V.M.) .— The first passage time of a level and the behavior at infinity for a class of processes with independent increments, Theor. Prob. Appl.9 (1964), pp. 653-661. Zbl0149.12903MR1445760
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.