Compact Jacobi matrices : from Stieltjes to Krein and M ( a , b )

Walter Van Assche

Annales de la Faculté des sciences de Toulouse : Mathématiques (1996)

  • Volume: S5, page 195-215
  • ISSN: 0240-2963

How to cite

top

Van Assche, Walter. "Compact Jacobi matrices : from Stieltjes to Krein and $M(a, b)$." Annales de la Faculté des sciences de Toulouse : Mathématiques S5 (1996): 195-215. <http://eudml.org/doc/73402>.

@article{VanAssche1996,
author = {Van Assche, Walter},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {compact Jacobi matrices; orthogonal polynomials; compact perturbations; spectral theory; JFM 26.0326.01; continued fraction; Lommel polynomials; three-term recurrence relation},
language = {eng},
pages = {195-215},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Compact Jacobi matrices : from Stieltjes to Krein and $M(a, b)$},
url = {http://eudml.org/doc/73402},
volume = {S5},
year = {1996},
}

TY - JOUR
AU - Van Assche, Walter
TI - Compact Jacobi matrices : from Stieltjes to Krein and $M(a, b)$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1996
PB - Université Paul Sabatier, Institut de Mathématiques
VL - S5
SP - 195
EP - 215
LA - eng
KW - compact Jacobi matrices; orthogonal polynomials; compact perturbations; spectral theory; JFM 26.0326.01; continued fraction; Lommel polynomials; three-term recurrence relation
UR - http://eudml.org/doc/73402
ER -

References

top
  1. [1] Akhiezer ( N.I. ) and Glazman ( I.M.).— Theory of Linear Operators in Hilbert Space, vol. I, Pitman, Boston, 1981. Zbl0467.47001
  2. [2] Al-Salam ( W. A.) and Ismail ( M.E.H.).— Orthogonal polynomials associated with the Rogers-Ramanujan continued fraction, Pacific J. Math.104 (1983), pp. 269-283. Zbl0526.33009MR684290
  3. [3] Askey ( R.) and Ismail ( M.). - Recurrence relations, continued fractions and orthogonal polynomials, Memoirs Amer. Math. Soc.300, Providence, RI, 1984 . Zbl0548.33001
  4. [4] Blumenthal ( O. ).— Ueber die Entwicklung einer willkürlichen Funktion nach den Nennern des Ket tenbruches für ∫0-∞ ϕ(ξ)/(z - ξ) dξ, Inaugural-Dissertation. Göttingen, 1898. JFM29.0364.01
  5. [5] Chihara ( T.S.).— An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978. Zbl0389.33008MR481884
  6. [6] Chihara ( T.S. ) and Ismail ( M.E.H.).— Orthogonal polynomials suggested by a queueing model, Adv. Appl. Math.3 (1982), pp. 441-462. Zbl0504.60094MR682630
  7. [7] Dickinson ( D.).— On Lommel and Bessel polynomials , Proc. Amer. Math. Soc.5 (1954), pp. 946-956. Zbl0057.30603MR86897
  8. [8] Dickinson ( D.J.), Pollak ( H.O.) and Wannier ( G.H.).— On a class of polynomials orthogonal over a denumerable set, Pacific J. Math.6 (1956), pp. 239-247. Zbl0072.06601MR80190
  9. [9] Dombrowski ( J. ).— Orthogonal polynomials and functional analysis, in "Orthogonal Polynomials: Theory and Practice" (P. Nevai, ed.), NATO-ASI series C294, Kluwer, Dordrecht, 1990, pp. 147-161. Zbl0704.42022MR1100292
  10. [10] Dunford ( N. ) and Schwartz ( J.T.).- Linear Operators, Part II: Spectral theory. Self Adjoint Operators in Hilbert Space, Interscience Publishers (John Wiley & Sons), New York, 1963. Zbl0128.34803MR188745
  11. [11] Durán ( A.J. ) and Van Assche ( W.).— Orthogonal matrix polynomials and higher-order recurrence relations, Linear Algebra Appl.219 (1995 ), pp. 261-280. Zbl0827.15027MR1327404
  12. [12] Goh ( W.M.Y. ) and Wimp ( J.).— On the asymptotics of the Tricomi-Carlitz polynomials and their zero distribution (I, SIAM J. Math. Anal.25 ( 1994). pp. 420-428. Zbl0797.33005MR1266567
  13. [13] Goldberg ( J.L.).— Polynomials orthogonal over a denumerable set, Pacific J. Math.15, n° 4 (1965), pp. 1171-1186. Zbl0151.08202MR204735
  14. [14] Ismail ( M.E.H. ).— The zeros of basic Bessel functions, the functions Jν+ax(x), and associated orthogonal polynomials , J. Math. Anal. Appl.86 (1982), pp. 1-19. Zbl0483.33004
  15. [15] Kato ( T.). — Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966. Zbl0148.12601MR203473
  16. [16] Koelink ( H.T.) and Van Assche ( W.).— Orthogonal polynomials and Laurent polynomials related to the Hahn-Exton q-Bessel function , Constr. Approx.11 (1995), pp. 477-512. Zbl0855.33011MR1367174
  17. [17] Koekoek ( R. ) and Swarttouw ( R.F.).— The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Reports of the Faculty of Technical Mathematics and Informatics 94-05, Delft University of Technology, 1994, 120 pp. 
  18. [18] Kreĭn ( M.). — Concerning a special class of entire and meromorphic functions, in "O nekotorykh voprosakh teorii momentov'' (N. Akhiezer, M. Kreĭn), Nauchno-Tekhnicheskoe Izdatelstvo Ukrainy, Kharkov, 1938 ; translated in "Some questions in the theory of moments" ( N. I. Ahiezer, M. Kreĭn ), Translations of Mathematical Monographs. Vol. 2, Amer. Math. Soc., Providence, RI1962, pp. 241-265. 
  19. [19] Máté ( A.) and Nevai ( P.). - A generalization of Poincaré's theorem for recurrence relations, J. Approx. Theory63 (1990), pp. 92-97. Zbl0715.34131MR1074084
  20. [20] Máté ( A.) , Nevai ( P.) and Van Assche ( W.).— The supports of measures associated with orthogonal polynomials and the spectra of the related self-adjoint operators, Rocky Mountain J. Math.21 (1991), pp. 501-527. Zbl0731.42021MR1113940
  21. [21] Nevai ( P. ).— Orthogonal Polynomials, Memoirs Amer. Math. Soc.213, Providence, RI, 1979. Zbl0405.33009MR519926
  22. [22] Poincaré ( H. ). — Sur les équations linéaires aux différentielles et aux différences finies, Amer. J. Math.7 (1885), pp. 203-258. Zbl17.0290.01MR1505385JFM17.0290.01
  23. [23] Schwartz ( H.M. ).— A class of continued fractions, Duke Math. J.6 (1940), pp. 48-65. Zbl0026.30903MR1321JFM66.1233.01
  24. [24] Sleshinskii ( I.V.).— Convergence of continued fractions , Zap. Mat. Otod. Novoros. Obshchest.8 (1888), pp. 97-127. 
  25. [25] Stieltjes ( T.J.).— Recherches sur les fractions continues , Ann. Fac. Sci. Toulouse8 (1894), pp. J1-122; 9 (1895 ), pp. A1-47; Œuvres Complètes-Collected Papers, Vol. II (G. van Dijk , ed.), Springer-Verlag, Berlin , 1993, pp. 406-570 (English translation on pp. 609-745). JFM25.0326.01
  26. [26] Stone ( M.H. ).- Linear Transformations in Hilbert Space and their Applications to Analysis, Amer. Math. Soc. Colloq. Publ.15, Providence, RI, 1932. MR1451877JFM58.0420.02
  27. [27] Thron ( W.J. ). - Some results on separate convergence of continued fractions , in "Computational Methods and Function Theory" (St. Ruschewey et al., eds.), Lecture Notes in Mathematics1435, Springer-Verlag, Berlin, 1990, pp. 191-200. Zbl0711.30006MR1071773
  28. [28] Van Assche ( W. ). - Asymptotics of orthogonal polynomials and three-term recurrences, in "Orthogonal Polynomials: Theory and Practice" (P. Nevai, ed.), NATO-ASI series C294, Kluwer, Dordrecht, 1990 , pp. 435-462. Zbl0697.42023MR1100305
  29. [29] Van Doorn ( E.A.).— The transient state probabilities for a queueing model where potential customers are discouraged by queue length , J. Appl. Prob.18 ( 1981), pp. 499-506. Zbl0457.60070MR611792
  30. [30] Van Vleck ( E.B.).— On the convergence of the continued fraction of Gauss and other continued fractions, Annals of Math. (2) 3 (1901), pp. 1-18. Zbl32.0215.02MR1502271JFM32.0215.02
  31. [31] Van Vleck ( E.B.).— On the convergence of algebraic continued fractions whose coefficients have limiting values, Trans. Amer. Math. Soc.5 (1904 ), pp. 253-262. Zbl35.0233.03MR1500672JFM35.0233.03
  32. [32] Wall ( H.S. ). - On continued fractions which represent meromorphic functions, Bull. Amer. Math. Soc.39 (1933), pp. 946-952. Zbl0008.26202JFM59.0459.02
  33. [33] Wall ( H.S. ). — On the continued fractions of the form K∞1(bνz/1, Bull. Amer. Math. Soc.41 (1935), pp. 727-736. Zbl0013.10902

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.