Compact Jacobi matrices : from Stieltjes to Krein and
Annales de la Faculté des sciences de Toulouse : Mathématiques (1996)
- Volume: S5, page 195-215
- ISSN: 0240-2963
Access Full Article
topHow to cite
topVan Assche, Walter. "Compact Jacobi matrices : from Stieltjes to Krein and $M(a, b)$." Annales de la Faculté des sciences de Toulouse : Mathématiques S5 (1996): 195-215. <http://eudml.org/doc/73402>.
@article{VanAssche1996,
author = {Van Assche, Walter},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {compact Jacobi matrices; orthogonal polynomials; compact perturbations; spectral theory; JFM 26.0326.01; continued fraction; Lommel polynomials; three-term recurrence relation},
language = {eng},
pages = {195-215},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Compact Jacobi matrices : from Stieltjes to Krein and $M(a, b)$},
url = {http://eudml.org/doc/73402},
volume = {S5},
year = {1996},
}
TY - JOUR
AU - Van Assche, Walter
TI - Compact Jacobi matrices : from Stieltjes to Krein and $M(a, b)$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1996
PB - Université Paul Sabatier, Institut de Mathématiques
VL - S5
SP - 195
EP - 215
LA - eng
KW - compact Jacobi matrices; orthogonal polynomials; compact perturbations; spectral theory; JFM 26.0326.01; continued fraction; Lommel polynomials; three-term recurrence relation
UR - http://eudml.org/doc/73402
ER -
References
top- [1] Akhiezer ( N.I. ) and Glazman ( I.M.).— Theory of Linear Operators in Hilbert Space, vol. I, Pitman, Boston, 1981. Zbl0467.47001
- [2] Al-Salam ( W. A.) and Ismail ( M.E.H.).— Orthogonal polynomials associated with the Rogers-Ramanujan continued fraction, Pacific J. Math.104 (1983), pp. 269-283. Zbl0526.33009MR684290
- [3] Askey ( R.) and Ismail ( M.). - Recurrence relations, continued fractions and orthogonal polynomials, Memoirs Amer. Math. Soc.300, Providence, RI, 1984 . Zbl0548.33001
- [4] Blumenthal ( O. ).— Ueber die Entwicklung einer willkürlichen Funktion nach den Nennern des Ket tenbruches für ∫0-∞ ϕ(ξ)/(z - ξ) dξ, Inaugural-Dissertation. Göttingen, 1898. JFM29.0364.01
- [5] Chihara ( T.S.).— An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978. Zbl0389.33008MR481884
- [6] Chihara ( T.S. ) and Ismail ( M.E.H.).— Orthogonal polynomials suggested by a queueing model, Adv. Appl. Math.3 (1982), pp. 441-462. Zbl0504.60094MR682630
- [7] Dickinson ( D.).— On Lommel and Bessel polynomials , Proc. Amer. Math. Soc.5 (1954), pp. 946-956. Zbl0057.30603MR86897
- [8] Dickinson ( D.J.), Pollak ( H.O.) and Wannier ( G.H.).— On a class of polynomials orthogonal over a denumerable set, Pacific J. Math.6 (1956), pp. 239-247. Zbl0072.06601MR80190
- [9] Dombrowski ( J. ).— Orthogonal polynomials and functional analysis, in "Orthogonal Polynomials: Theory and Practice" (P. Nevai, ed.), NATO-ASI series C294, Kluwer, Dordrecht, 1990, pp. 147-161. Zbl0704.42022MR1100292
- [10] Dunford ( N. ) and Schwartz ( J.T.).- Linear Operators, Part II: Spectral theory. Self Adjoint Operators in Hilbert Space, Interscience Publishers (John Wiley & Sons), New York, 1963. Zbl0128.34803MR188745
- [11] Durán ( A.J. ) and Van Assche ( W.).— Orthogonal matrix polynomials and higher-order recurrence relations, Linear Algebra Appl.219 (1995 ), pp. 261-280. Zbl0827.15027MR1327404
- [12] Goh ( W.M.Y. ) and Wimp ( J.).— On the asymptotics of the Tricomi-Carlitz polynomials and their zero distribution (I, SIAM J. Math. Anal.25 ( 1994). pp. 420-428. Zbl0797.33005MR1266567
- [13] Goldberg ( J.L.).— Polynomials orthogonal over a denumerable set, Pacific J. Math.15, n° 4 (1965), pp. 1171-1186. Zbl0151.08202MR204735
- [14] Ismail ( M.E.H. ).— The zeros of basic Bessel functions, the functions Jν+ax(x), and associated orthogonal polynomials , J. Math. Anal. Appl.86 (1982), pp. 1-19. Zbl0483.33004
- [15] Kato ( T.). — Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966. Zbl0148.12601MR203473
- [16] Koelink ( H.T.) and Van Assche ( W.).— Orthogonal polynomials and Laurent polynomials related to the Hahn-Exton q-Bessel function , Constr. Approx.11 (1995), pp. 477-512. Zbl0855.33011MR1367174
- [17] Koekoek ( R. ) and Swarttouw ( R.F.).— The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Reports of the Faculty of Technical Mathematics and Informatics 94-05, Delft University of Technology, 1994, 120 pp.
- [18] Kreĭn ( M.). — Concerning a special class of entire and meromorphic functions, in "O nekotorykh voprosakh teorii momentov'' (N. Akhiezer, M. Kreĭn), Nauchno-Tekhnicheskoe Izdatelstvo Ukrainy, Kharkov, 1938 ; translated in "Some questions in the theory of moments" ( N. I. Ahiezer, M. Kreĭn ), Translations of Mathematical Monographs. Vol. 2, Amer. Math. Soc., Providence, RI1962, pp. 241-265.
- [19] Máté ( A.) and Nevai ( P.). - A generalization of Poincaré's theorem for recurrence relations, J. Approx. Theory63 (1990), pp. 92-97. Zbl0715.34131MR1074084
- [20] Máté ( A.) , Nevai ( P.) and Van Assche ( W.).— The supports of measures associated with orthogonal polynomials and the spectra of the related self-adjoint operators, Rocky Mountain J. Math.21 (1991), pp. 501-527. Zbl0731.42021MR1113940
- [21] Nevai ( P. ).— Orthogonal Polynomials, Memoirs Amer. Math. Soc.213, Providence, RI, 1979. Zbl0405.33009MR519926
- [22] Poincaré ( H. ). — Sur les équations linéaires aux différentielles et aux différences finies, Amer. J. Math.7 (1885), pp. 203-258. Zbl17.0290.01MR1505385JFM17.0290.01
- [23] Schwartz ( H.M. ).— A class of continued fractions, Duke Math. J.6 (1940), pp. 48-65. Zbl0026.30903MR1321JFM66.1233.01
- [24] Sleshinskii ( I.V.).— Convergence of continued fractions , Zap. Mat. Otod. Novoros. Obshchest.8 (1888), pp. 97-127.
- [25] Stieltjes ( T.J.).— Recherches sur les fractions continues , Ann. Fac. Sci. Toulouse8 (1894), pp. J1-122; 9 (1895 ), pp. A1-47; Œuvres Complètes-Collected Papers, Vol. II (G. van Dijk , ed.), Springer-Verlag, Berlin , 1993, pp. 406-570 (English translation on pp. 609-745). JFM25.0326.01
- [26] Stone ( M.H. ).- Linear Transformations in Hilbert Space and their Applications to Analysis, Amer. Math. Soc. Colloq. Publ.15, Providence, RI, 1932. MR1451877JFM58.0420.02
- [27] Thron ( W.J. ). - Some results on separate convergence of continued fractions , in "Computational Methods and Function Theory" (St. Ruschewey et al., eds.), Lecture Notes in Mathematics1435, Springer-Verlag, Berlin, 1990, pp. 191-200. Zbl0711.30006MR1071773
- [28] Van Assche ( W. ). - Asymptotics of orthogonal polynomials and three-term recurrences, in "Orthogonal Polynomials: Theory and Practice" (P. Nevai, ed.), NATO-ASI series C294, Kluwer, Dordrecht, 1990 , pp. 435-462. Zbl0697.42023MR1100305
- [29] Van Doorn ( E.A.).— The transient state probabilities for a queueing model where potential customers are discouraged by queue length , J. Appl. Prob.18 ( 1981), pp. 499-506. Zbl0457.60070MR611792
- [30] Van Vleck ( E.B.).— On the convergence of the continued fraction of Gauss and other continued fractions, Annals of Math. (2) 3 (1901), pp. 1-18. Zbl32.0215.02MR1502271JFM32.0215.02
- [31] Van Vleck ( E.B.).— On the convergence of algebraic continued fractions whose coefficients have limiting values, Trans. Amer. Math. Soc.5 (1904 ), pp. 253-262. Zbl35.0233.03MR1500672JFM35.0233.03
- [32] Wall ( H.S. ). - On continued fractions which represent meromorphic functions, Bull. Amer. Math. Soc.39 (1933), pp. 946-952. Zbl0008.26202JFM59.0459.02
- [33] Wall ( H.S. ). — On the continued fractions of the form K∞1(bνz/1, Bull. Amer. Math. Soc.41 (1935), pp. 727-736. Zbl0013.10902
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.