Statistics, yokes and symplectic geometry
Ole E. Barndorff-Nielsen; Peter E. Jupp
Annales de la Faculté des sciences de Toulouse : Mathématiques (1997)
- Volume: 6, Issue: 3, page 389-427
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBarndorff-Nielsen, Ole E., and Jupp, Peter E.. "Statistics, yokes and symplectic geometry." Annales de la Faculté des sciences de Toulouse : Mathématiques 6.3 (1997): 389-427. <http://eudml.org/doc/73427>.
@article{Barndorff1997,
author = {Barndorff-Nielsen, Ole E., Jupp, Peter E.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {expected likelihood yoke; Hamiltonian; Lagrangian submanifold; Lie group actions; observed likelihood yoke; raising and lowering tensors; symplectic structures; Lagrangian of a yoke; momentum maps},
language = {eng},
number = {3},
pages = {389-427},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Statistics, yokes and symplectic geometry},
url = {http://eudml.org/doc/73427},
volume = {6},
year = {1997},
}
TY - JOUR
AU - Barndorff-Nielsen, Ole E.
AU - Jupp, Peter E.
TI - Statistics, yokes and symplectic geometry
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1997
PB - UNIVERSITE PAUL SABATIER
VL - 6
IS - 3
SP - 389
EP - 427
LA - eng
KW - expected likelihood yoke; Hamiltonian; Lagrangian submanifold; Lie group actions; observed likelihood yoke; raising and lowering tensors; symplectic structures; Lagrangian of a yoke; momentum maps
UR - http://eudml.org/doc/73427
ER -
References
top- [1] Abraham ( R.) and Marsden ( J.E.) .— Foundations of Mechanics, 2nd ed., Addison-Wesley, Redwood City (1978). Zbl0393.70001MR515141
- [2] Amari ( S.-I.) .— Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics, Springer-Verlag, Heidelberg, 28 (1985). Zbl0559.62001MR788689
- [3] ARNOL'D ( V.I.) and GIVENTAL' ( A.B.) .— Symplectic Geometry, In "Dynamical Systems IV: Symplectic Geometry and its Applications", Encyclopaedia of Mathematical Sciences (V. I. Arnol'd and S. P. Novikov, eds), Springer-Verlag, Berlin, 4 (1990), pp. 1-136. Zbl0780.58016MR1042758
- [4] Balian ( R.) .— From Microphysics, to Macrophysics, Springer-Verlag, Berlin, 1 (1991). Zbl1131.82300MR1129462
- [5] Barndorff-Nielsen ( O.E.) .— Hyperbolic distributions and distributions on hyperbolae, Scand. J. Statist.5 (1978), pp. 151-157. Zbl0386.60018MR509451
- [6] Barndorff-Nielsen ( O.E.) .— Likelihood and observed geometries, Ann. Statist.14 (1986), pp. 856-873. Zbl0632.62028MR856794
- [7] Barndorff-Nielsen ( O.E.) .— Differential geometry and statistics: some mathematical aspects, Indian J. Math.29 (1987), pp. 335-350. Zbl0663.62013MR971645
- [8] Barndorff-Nielsen ( O.E.) .— Parametric Statistical Models and Likelihood, Lecture Notes in Statistics, Springer-Verlag, Heidelberg, 50 (1988). Zbl0691.62002MR971982
- [9] Barndorff-Nielsen ( O.E.) and Cox ( D.R.) .— Inference and Asymptotics, Chapman & Hall, London (1994). Zbl0826.62004
- [10] Barndorff-Nielsen ( O.E.) and Jupp ( P.E.) .- Differential geometry, profile likelihood, L-sufficiency and composite transformation models, Ann. Statist.16 (1988), pp. 1009-1043. Zbl0702.62032MR959187
- [11] Barndorff-Nielsen ( O.E.) and Jupp ( P.E.) .— Yokes and symplectic structures, J. Statist. Planning and Infce. 63 (1997), pp. 133-146. Zbl0943.37027MR1491574
- [12] Blæsild ( P.) . — Yokes and tensors derived from yokes, Ann. Inst. Statist. Math.43 (1991), pp. 95-113. Zbl0782.62007MR1105824
- [13] Combet ( E.) .— Intégrales Exponentielles, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 937 (1982). Zbl0489.58002MR665746
- [14] Critchley ( F.), Marriott ( P.K.) and Salmon ( M.) .— Preferred point geometry and statistical manifolds, Ann. Statist.21 (1993), 1197-1224. Zbl0798.62009MR1241265
- [15] Critchley ( F.), Marriott ( P.K.) and Salmon ( M.) .— Preferred point geometry and the local differential geometry of the Kullback-Leibler divergence, Ann. Statist.22 (1994), pp. 1587-1602. Zbl0821.62004MR1311991
- [16] Eguchi ( S.) .— Second order efficiency of minimum contrast estimation in a curved exponential family, Ann. Statist.11 (1983), pp. 793-803. Zbl0519.62027MR707930
- [17] Friedrich ( T.) . — Die Fisher-Information und symplectische Strukturen, Math. Nachr.153 (1991), pp. 273-296. Zbl0792.62003MR1131949
- [18] Jensen ( J.L.) .— On the hyperboloid distribution, Scand. J. Statist.8 (1981), pp. 193-206. Zbl0477.62005MR642800
- [19] Marsden ( J.E.) .— Lectures on Mechanics, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 174 (1992). Zbl0744.70004MR1171218
- [20] Mcduff ( D.) .— Examples of symplectic structures, Invent. Math.89 (1987), pp. 13-36. Zbl0625.53040MR892186
- [21] Murray ( M.K.) and Rice ( J.W.) .— Differential Geometry and Statistics, Chapman & Hall, London (1993). Zbl0804.53001
- [22] Nakamura ( Y.) . — Completely integrable gradient systems on the manifolds of Gaussian and multinomial distributions, Japan J. Industr. Appl. Math.10 (1993), pp. 179-189. Zbl0814.58021MR1227728
- [23] Nakamura ( Y.) .— Gradient systems associated with probability distributions, Japan J. Industr. Appl. Math.11 (1994), pp. 21-30. Zbl0811.58036MR1266518
- [24] Skovgaard ( I.M.) .— On the density of minimum contrast estimators, Ann. Statist.18 (1990), pp. 779-789. Zbl0709.62029MR1056336
- [25] Weinstein ( A.) .— Symplectic manifolds and their Lagrangian submanifolds, Adv. Math.6 (1971), pp. 329-346. Zbl0213.48203MR286137
- [26] Weinstein ( A.) . — Lectures on Symplectic Manifolds, AMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, Rhode Island, 29 (1977). Zbl0406.53031MR464312
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.