On the Hasse principle for homogeneous spaces with finite stabilizers

Mikhail Borovoi; Boris Kunyavskii

Annales de la Faculté des sciences de Toulouse : Mathématiques (1997)

  • Volume: 6, Issue: 3, page 481-497
  • ISSN: 0240-2963

How to cite

top

Borovoi, Mikhail, and Kunyavskii, Boris. "On the Hasse principle for homogeneous spaces with finite stabilizers." Annales de la Faculté des sciences de Toulouse : Mathématiques 6.3 (1997): 481-497. <http://eudml.org/doc/73429>.

@article{Borovoi1997,
author = {Borovoi, Mikhail, Kunyavskii, Boris},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {homogeneous spaces; obstructions to the Hasse principle; Brauer group},
language = {eng},
number = {3},
pages = {481-497},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the Hasse principle for homogeneous spaces with finite stabilizers},
url = {http://eudml.org/doc/73429},
volume = {6},
year = {1997},
}

TY - JOUR
AU - Borovoi, Mikhail
AU - Kunyavskii, Boris
TI - On the Hasse principle for homogeneous spaces with finite stabilizers
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1997
PB - UNIVERSITE PAUL SABATIER
VL - 6
IS - 3
SP - 481
EP - 497
LA - eng
KW - homogeneous spaces; obstructions to the Hasse principle; Brauer group
UR - http://eudml.org/doc/73429
ER -

References

top
  1. [ANT] Cassels ( J.W.S.) and Fröhlich ( A.) (Editors) .— Algebraic Number Theory, Academic Press, London - New York (1967). Zbl0153.07403MR215665
  2. [Bog] Bogomolov ( F.A.) .— The Brauer group of quotient spaces by linear group actions, Math. USSR Izv.30 (1988), pp. 455-485. Zbl0679.14025MR903621
  3. [Bor] Borovoi ( M.) .— The Brauer-Manin obstruction for homogeneous spaces with connected or abelian stabilizer, J. für die reine und angew. Math.473 (1996), pp. 181-194. Zbl0844.14020MR1390687
  4. [CT1] Colliot-Thélène ( J.-L.) .— Arithmétique des variétés rationnelles et problèmes birationnels, Proc. Int. Congr. Math., Berkeley, California, 1 (1986), pp. 641-653. Zbl0698.14060MR934267
  5. [CT2] Colliot-Thélène ( J.-L.) . — L'arithmétique des variétés rationnelles. Rapport général à l'occasion de la remise du prix Fermat (Toulouse, juin 1991), Annales de la Faculté des sciences de Toulouse1 (1992), pp. 295-336. Zbl0787.14012MR1225663
  6. [CTS1] Colliot-Thélène ( J.-L.) and Sansuc ( J.-J.) .— La descente sur les variétés rationnelles, II, Duke Math. J.54 (1987), pp. 375-492. Zbl0659.14028MR899402
  7. [CTS2] Colliot-Thélène ( J.-L.) and Sansuc ( J.-J.) .— Non-rationalité de corps d'invariants sous un groupe fini (d'après Saltman and Bogomolov), unpublished notes. 
  8. [CTS3] Colliot-Thélène ( J.-L.) and Sansuc ( J.-J.) .— The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group), unpublished lecture notes, IX Escuola Latinoamericana de Matemáticas, Santiago de Chile (July 1988). 
  9. [Har] Harari ( D.) .— Obstructions de Manin transcendantes, Séminaire de Théorie des Nombres de Paris 1993-1994, S. David (ed.), Cambridge Univ. Press, 1996. Zbl0926.14009MR1628794
  10. [Lan] Lang ( S.) .— Algebraic Number Theory, Addison-Wesley, Reading, Masson (1970). Zbl0211.38404MR282947
  11. [Man1] Manin ( Yu I.) .— Le groupe de Brauer-Grothendieck en géométrie diophantienne, Actes du Congrès Int. Math., Nice, 1970, Gauthiers-Villars, Paris, 1 (1971), pp. 401-411. Zbl0239.14010MR427322
  12. [Man2] Manin ( Yu I.) .— Cubic forms: algebra, geometry, arithmetic, "Nauka", Moscow, 1972; English transl., North-Holland, Amsterdam (1974). Zbl0582.14010MR833513
  13. [MaTs] Manin ( Yu I.) and Tsfasman ( M.A.) .- Rational varieties: algebra, geometry and arithmetic, Russian Math. Surveys41, n° 2 (1986), pp. 51-116. Zbl0621.14029MR842161
  14. [Mum] Mumford ( D.) .— Abelian Varieties, Oxford Univ. Press (1970). Zbl0326.14012MR282985
  15. [Ros] Rosenlicht ( M.) .— Toroidal algebraic groups, Proc. Amer. Math. Soc.12 (1961), pp. 984-988. Zbl0107.14703MR133328
  16. [Sal] Saltman ( D.J.) .— Noether's problem over an algebraically closed field, Invent. Math.77 (1984), pp. 71-84. Zbl0546.14014MR751131
  17. [San] Sansuc ( J.-J.) .— Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. für die reine und angew. Math.327 (1981), pp. 12-80. Zbl0468.14007MR631309
  18. [Ser1] Serre ( J.-P.) .— Corps Locaux, Hermann, Paris (1962). Zbl0137.02601
  19. [Ser2] Serre ( J.-P.) .— Cohomologie galoisienne, Lect. Notes Math., Springer-Verlag, Berlin - Heidelberg - New York, 5 (1964). Zbl0128.26303MR1324577
  20. [Vos1] Voskresenskiĭ ( V.E.) .— Birational properties of linear algebraic groups, Math. USSR Izv.4 (1970), pp. 1-17. Zbl0254.14016MR262251
  21. [Vos2] Voskresenskiĭ ( V.E.) .- Algebraic Tori, "Nauka", Moscow1977 (Russian). Zbl0499.14013MR506279

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.