An existence result on noncoercive hemivariational inequalities

George Dinca; Panagiotis D. Panagiotopoulos; Gabriela Pop

Annales de la Faculté des sciences de Toulouse : Mathématiques (1997)

  • Volume: 6, Issue: 4, page 609-632
  • ISSN: 0240-2963

How to cite

top

Dinca, George, Panagiotopoulos, Panagiotis D., and Pop, Gabriela. "An existence result on noncoercive hemivariational inequalities." Annales de la Faculté des sciences de Toulouse : Mathématiques 6.4 (1997): 609-632. <http://eudml.org/doc/73436>.

@article{Dinca1997,
author = {Dinca, George, Panagiotopoulos, Panagiotis D., Pop, Gabriela},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {existence of solutions; noncoercive hemivariational inequality; approximation},
language = {eng},
number = {4},
pages = {609-632},
publisher = {UNIVERSITE PAUL SABATIER},
title = {An existence result on noncoercive hemivariational inequalities},
url = {http://eudml.org/doc/73436},
volume = {6},
year = {1997},
}

TY - JOUR
AU - Dinca, George
AU - Panagiotopoulos, Panagiotis D.
AU - Pop, Gabriela
TI - An existence result on noncoercive hemivariational inequalities
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1997
PB - UNIVERSITE PAUL SABATIER
VL - 6
IS - 4
SP - 609
EP - 632
LA - eng
KW - existence of solutions; noncoercive hemivariational inequality; approximation
UR - http://eudml.org/doc/73436
ER -

References

top
  1. [1] Aubin ( J.-P.) .— Gradients généralisés de Clarke, Ann. Sc. Math. Québec, II, n° 2 (1978), pp. 197-252. Zbl0411.49001MR516562
  2. [2] Baiocchi ( C.), Gastaldi ( F.) and Tomarelli ( F.) .— Some ExistenceResults on Noncoercive Variational Inequalities, Annali Scuola Norm. Sup. Pisa, Serie IV, XIII, n° 4 (1986). Zbl0644.49004MR880400
  3. [3] Brezis ( H.) and Haraux ( A.) .- Image d'une somme d'opérateurs monotones et applications, Israel J. Math.23 (1976), pp. 165-186. Zbl0323.47041MR399965
  4. [4] Brezis ( H.) and Nirenberg ( L.) .- Characterizations of the Ranges of Some Nonlinear Operators and Applications to Boundary Value Problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci.4, n° 5 (1978), pp. 225-326. Zbl0386.47035MR513090
  5. [5] Bourbaki ( N.) .- Éléments de Mathématique. Espaces vectoriels topologiques, chap. I et II, Act. Sci. Ind.1189, Hermann, Paris (1966). Zbl0145.37702MR203425
  6. [6] Chang ( K.C.) .- Variational Methods for Non-differentiable Functionals and their Applications to Partial Differential Equations, J. Math. Anal. Appl.80 (1981), pp. 102-129. Zbl0487.49027MR614246
  7. [7] Clarke ( F.H.) .- Optimization and Nonsmooth Analysis, John Wiley, New York (1983). Zbl0582.49001MR709590
  8. [8] Dinca ( G.), Panagiotopoulos ( P.D.) and Pop ( G.) .— Coercive and Semicoercive Hemivariational Inequalities on Convex Sets, Vest. R.U.D.N.2 (1995), pp. 96-110. Zbl0972.47057MR1336252
  9. [9] Dinca ( G.), Panagiotopoulos ( P.D.) and Pop ( G.) .- Inégalités hémivariationnelles semi-coercives sur des ensembles convexes, C. R. Acad. Sci., Paris, Série I, 320 (1995), pp. 1183-1186. Zbl0827.49009MR1336252
  10. [10] Fichera ( G.) .- Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Mem. Sez., t. I, 8, n° 7 (1964), pp. 71-140. Zbl0146.21204MR178631
  11. [11] Fichera ( G.) .- Boundary value problems in elasticity with unilateral constraints, Handbuch der PhysikVIa, n° 2, Springer, Berlin (1972), pp. 347-389. MR419999
  12. [12] Goeleven ( D.) .— On the Solvability of Noncoercive Linear Variational Inequalities in Separable Hilbert Spaces, JOTA79, n° 3 (1993), pp. 493-511. Zbl0798.49012MR1255283
  13. [13] Goeleven ( D.) . - On Noncoercive Variational Inequalities and Some Applications in Unilateral Mechanics, Ph. D. Degree in Sciences, F.U.N.D.P. (1993). 
  14. [14] Gowda ( M.S.) and Seidman ( I.) .- Generalized Linear Complementarity Problems, Mathematical Programming46 (1990), pp. 329-340. Zbl0708.90089MR1054142
  15. [15] Kinderlehrer ( D.) and Stampacchia ( G.) .— An introduction to Variational Inequalities and Their Applications, Academic Press, New York (1980). Zbl0457.35001MR567696
  16. [16] Lemke ( C.E.) .— Bimatrix Equilibrum Points and Mathematical Programming, Management Science11 (1965), pp. 681-689. Zbl0139.13103MR189823
  17. [17] Lions ( J.-L.) and Stampacchia ( G.) .— Variational Inequalities, Comm. Pure Appl. Math.20 (1967), pp. 493-519. Zbl0152.34601MR216344
  18. [18] Mironescu ( P.) Private Communication. 
  19. [19] Mckenna ( P.J.) and Rauch ( J.) .— Strongly Nonlinear Perturbations of Non-negative Boundary Value Problems with Kernel, J. Diff. Eq.28 (1978), pp. 253-265. Zbl0405.34019MR491053
  20. [20] Panagiotopoulos ( P.D.) .- Nonconvex Superpotentials in the Sense of F. H. Clarke and Applications, Mech. Res. Comm.8 (1981), pp. 335-340. Zbl0497.73020MR639382
  21. [21] Panagiotopoulos ( P.D.) . — Hemivariational Inequalities and Applications in Mechanics and Engineering, Springer Verlag, Berlin, New York (1993). Zbl0826.73002MR1385670
  22. [22] Panagiotopoulos ( P.D.) .— Coercive and Semicoercive Hemivariational Inequalities, Nonlinear Anal. TMA, 16 (1991), pp. 209-231. Zbl0733.49012MR1091520
  23. [23] Rockafellar ( R.T.) .— Convex Analysis, Princeton Univ. Press, Princeton (1970). Zbl0193.18401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.