Relations linéaires entre solutions d'une équation différentielle

Élie Compoint; Michael Singer

Annales de la Faculté des sciences de Toulouse : Mathématiques (1998)

  • Volume: 7, Issue: 4, page 659-670
  • ISSN: 0240-2963

How to cite

top

Compoint, Élie, and Singer, Michael. "Relations linéaires entre solutions d'une équation différentielle." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.4 (1998): 659-670. <http://eudml.org/doc/73469>.

@article{Compoint1998,
author = {Compoint, Élie, Singer, Michael},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {fre},
number = {4},
pages = {659-670},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Relations linéaires entre solutions d'une équation différentielle},
url = {http://eudml.org/doc/73469},
volume = {7},
year = {1998},
}

TY - JOUR
AU - Compoint, Élie
AU - Singer, Michael
TI - Relations linéaires entre solutions d'une équation différentielle
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1998
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 4
SP - 659
EP - 670
LA - fre
UR - http://eudml.org/doc/73469
ER -

References

top
  1. [1] Poole ( E.G.C.) .— Introduction to the Theory of Linear Differential Equations, Dover Publications, Inc., New-York, 1960. Zbl0090.30202MR111886
  2. [2] Compoint ( E.) . - Généralisation d'un théorème de Fano et Singer, C.R.A.S., 318, Série I (1994), pp. 885-887. Zbl0810.12005MR1278145
  3. [3] Compoint ( E.) .- Équations différentielles, relations algébriques et invariants, thése de Doctorat de l'Université Paris VI, 1996. 
  4. [4] Compoint ( E.) et Singer ( M.F.) .— Calculating Galois Groups of Completely Reducible Linear Operators, manuscrit, North Carolina State University, 1997. 
  5. [5] Hoeij ( M. Van) and Weil ( J.-A.) .— An Algorithm for Computing Invariants of Differential Galois Groups, à paraître dans Proceedings of MEGA-96. 
  6. [6] Humphreys ( J.E.) .— Linear Algebraic Groups, Springer-Verlag, New-York, 1981. Zbl0471.20029MR396773
  7. [7] Kaplansky ( I.) .— An Introduction to Differential Algebra, Deuxième édition, Hermann, Paris, 1976. MR460303
  8. [8] Lang ( S.) . - Algebra, Deuxième édition, Addison-Wesley, Menlo Park, 1984. Zbl0712.00001MR783636
  9. [9] Singer ( M.F.) .- Testing Reducibility of Linear Differential Operators: A Group Theoretic Perspective, Applicable Algebra in Engineering, Communication and Computing7 (1996), pp. 77-106. Zbl0999.12007MR1462491
  10. [10] Singer ( M.F.) .- Liouvillian solutions of linear differential equations with Liouvillian coefficients, Journal of Symbolic Computation11 (1991), pp. 251-273. Zbl0776.12002MR1103731
  11. [11] Singer ( M.F.) et Ulmer ( F.) .- Galois Groups of Second and Third Order Linear Differential Equations, Journal of Symbolic Computation16, n° 1 (1993), pp. 1-36. Zbl0802.12004MR1237348
  12. [12] Waerden ( B. L. VAN DER) .— Modern Algebra, Deuxième édition, Frederick Ungar Publishing Co, New-York, 1953. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.