Majorations affines du nombre de zéros d'intégrales abéliennes pour les hamiltoniens quartiques elliptiques

Frédéric Girard; Moulay-Ahmed Jebrane

Annales de la Faculté des sciences de Toulouse : Mathématiques (1998)

  • Volume: 7, Issue: 4, page 671-685
  • ISSN: 0240-2963

How to cite

top

Girard, Frédéric, and Jebrane, Moulay-Ahmed. "Majorations affines du nombre de zéros d'intégrales abéliennes pour les hamiltoniens quartiques elliptiques." Annales de la Faculté des sciences de Toulouse : Mathématiques 7.4 (1998): 671-685. <http://eudml.org/doc/73470>.

@article{Girard1998,
author = {Girard, Frédéric, Jebrane, Moulay-Ahmed},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {fre},
number = {4},
pages = {671-685},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Majorations affines du nombre de zéros d'intégrales abéliennes pour les hamiltoniens quartiques elliptiques},
url = {http://eudml.org/doc/73470},
volume = {7},
year = {1998},
}

TY - JOUR
AU - Girard, Frédéric
AU - Jebrane, Moulay-Ahmed
TI - Majorations affines du nombre de zéros d'intégrales abéliennes pour les hamiltoniens quartiques elliptiques
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1998
PB - UNIVERSITE PAUL SABATIER
VL - 7
IS - 4
SP - 671
EP - 685
LA - fre
UR - http://eudml.org/doc/73470
ER -

References

top
  1. [1] Gavrilov ( L.) .— Petrov modules and zeros of Abelian integrals, Bull. Sci. Math. (à paraître). Zbl0964.32022MR1668534
  2. [2] Gavrilov ( L.) .— Nonoscillation of elliptic integrals related to cubic polynomials with symmetry of order three, Bull. Lond. Math. Soc. (à paraître) . Zbl0959.37039MR1608110
  3. [3] Girard ( F.) .- Une propriété de Chebychev pour certaines intégrales abéliennes généralisées, C. R. Acad. Sci.Paris, 326, Série I (1998), pp. 471-476. Zbl0926.34019MR1648971
  4. [4] Ha Huy Vui ET Nguyen Le Anh .— Le comportement géométrique à l'infini des polynômes de deux variables complexes, C. R. Acad. Sci.Paris, 309, Série I (1989), pp. 183-186. Zbl0685.32006MR1005635
  5. [5] Horozov ( E.) et Iliev ( I.D.) .— Linear estimate for the number ofzeros of Abelian integrals with cubic Hamiltonians, Conférence à Luminy, octobre 1997. MR1660361
  6. [6] Iliev ( D.) .— On second order bifurcations of limit cycles, J. Lond. Math. Soc.1998. Zbl0922.34037MR1668195
  7. [7] Iliev ( D.) et Perko ( L.) .— Higher order bifurcation of limit cycles, (à paraître). Zbl0926.34033
  8. [8] IL'YASHENKO ( Yu S.) . - The multiplicity of limit cycles arising from perturbation of the form w' = P2 /Q1 of a Hamilton equation in the real and complex domain, Amer. Math. Soc. Trans.118, n° 2 (1982). Zbl0494.34018
  9. [9] IL'YASHENKO ( Yu S.) et Yakovenko ( S.), .- Double exponential estimate for the number of zeros of complete Abelian integrals, Invent. Math.121, n° 3 (1995), pp. 613-650. Zbl0865.34007MR1353310
  10. [10] IL'YASHENKO ( Yu S.) et Yakovenko ( S.), .— Counting real zeros of analytic function satisying linear ordinary differential equations, J. Diff. Equ.126, n° 1 (1996), pp. 87-105. Zbl0847.34010MR1382058
  11. [11] Jebrane ( M.) et Zoladek ( H.) .- Abelian integrals in non-symmetricperturbation of symmetric Hamiltonian vector field, Adv. Appl Math.15 (1994), pp. 1-12. Zbl0802.34041MR1260295
  12. [12] Khovanski ( A.) .— Real analytic manifolds with finiteness properties and complex Abelian integrals, Funct. Anal. Appl.18 (1984), pp. 119-128. Zbl0584.32016
  13. [13] Malgrange ( B.) .- Intégrales asymptotiques et monodromie, Ann. Scient. Ec. Norm. Supp.7 (1974), pp. 405-430. Zbl0305.32008MR372243
  14. [14] Mardešiċ ( P.) .— The number of limit cycles of polynomial perturbations of a Hamiltonian vector field, Erg. Th. Dyn. Sys.10 (1990), pp. 523-529. Zbl0691.58031MR1074317
  15. [15] Novikov ( D.) et Yakovenko ( S.) .— Simple exponential estimate for the number of real zeros of complete Abelian integrals, Ann. Inst. Fourier45 (1995), pp. 897-927. Zbl0832.58028MR1359833
  16. [16] Petrov ( G.S.) .— Elliptic integrals and their non-oscillatorness, Funct. Anal. Appl.20, n° 1 (1986), pp. 46-49. Zbl0656.34017MR831048
  17. [17] Petrov ( G.S.) .- Complex zeros of an elliptic integral, Funct. Anal. Appl.21 (1987), n° 3, pp. 87-88. Zbl0625.33001MR911784
  18. [18] Petrov ( G.S.) . - Non-oscillatorness of elliptic integrals, Funct. Anal. Appl.24, n° 3 (1990), pp. 45-50. Zbl0738.33013
  19. [19] Varchenko ( A.N.) .— Estimate of the number of zeros of Abelian integrals depending on parameters and limit cycles, Funct. Anal. Appl.18 (1984), pp. 98-108. Zbl0578.58035MR745696

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.