Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping
Carlos Frederico Vasconcellos; Lucia Maria Teixeira
Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)
- Volume: 8, Issue: 1, page 173-193
- ISSN: 0240-2963
Access Full Article
topHow to cite
topVasconcellos, Carlos Frederico, and Teixeira, Lucia Maria. "Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.1 (1999): 173-193. <http://eudml.org/doc/73477>.
@article{Vasconcellos1999,
author = {Vasconcellos, Carlos Frederico, Teixeira, Lucia Maria},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {polynomial decay of the energy},
language = {eng},
number = {1},
pages = {173-193},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping},
url = {http://eudml.org/doc/73477},
volume = {8},
year = {1999},
}
TY - JOUR
AU - Vasconcellos, Carlos Frederico
AU - Teixeira, Lucia Maria
TI - Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 1
SP - 173
EP - 193
LA - eng
KW - polynomial decay of the energy
UR - http://eudml.org/doc/73477
ER -
References
top- [1] Bisognin ( E.), Bisognin ( V.), Menzala ( G.P.) and Zuazua ( E.) .- On exponential stability for von Kármán equations in the presence of thermal effects, Math. Methods in the Applied Science21 (1998), pp. 393-416. Zbl0911.35022MR1608076
- [2] Dickey ( R.W.) .- Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl.29 (1970), pp. 443-454. Zbl0187.04803MR253617
- [3] Eisley ( J.G.) .— Nonlinear vibrations of beams and rectangular plates, Z. Angew Math. Phys.15 (1964), pp. 167-175. Zbl0133.19101MR175375
- [4] Haraux ( A.) .- Semilinear Hyperbolic Problems in Bounded Domains, Math. reports3, Part 1, Harwood Academic Publishers, Gordon & Breach (1987). Zbl0875.35054
- [5] Horn ( M.A.) .— Nonlinear boundary stabilization of a von Kármán plate equation, Lecture Notes in Pure and Appl. Math.152 (1994), pp. 581-604. Zbl0925.93420MR1243226
- [6] Horn ( M.A.) and Lasiecka ( I.) .- Global existence and uniqueness of regular solutions to the dynamic von Kármán system with nonlinear boundary dissipation, Lecture Notes in Pure and Appl. Math.165 (1994), pp. 99-119. Zbl0814.35069MR1299140
- [7] Komornik ( V.) .— Exact Controllabilty and Stabilization. The Multiplier Method, RAM, Masson and John Willey (1994). Zbl0937.93003MR1359765
- [8] Lagnese ( J.) .- Modelling and stabilization of nonlinear plates, Int. Ser. of Numerical Math.100 (1991), pp. 247-264. Zbl0761.93065MR1155650
- [9] Lagnese ( J.) .— Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics. Philadelphia (1989). Zbl0696.73034MR1061153
- [10] Lagnese ( J.) and Leugering ( G.) .— Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, J. Diff. Eqs91 (1991), pp. 355-388. Zbl0802.73052MR1111180
- [11] Lan ( H.B.), Thanh ( L.T.), Long ( N.T.), Bang ( N.T.), Cuong ( T.L.) and Minh ( T.N.) . — On the nonlinear vibrations equation with a coefficient containing an integral, Comp. Maths Math. Phys.33, n° 9 (1993), pp. 1171-1178. Zbl0816.35089MR1240040
- [12] Lasiecka ( I.) .- Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary, J. Diff. Eqs79 (1989), pp. 340-381. Zbl0694.35102MR1000694
- [13] Lasiecka ( I.) and Triggiani ( R.) .— Uniform stabilization of the wave equation with Dirichlet feedback control without geometrical conditions, Appl. Math. Optim.25 (1992), pp. 189-224. Zbl0780.93082MR1142681
- [14] Lions ( J.-L.) . - On Some Questions in Boundary Value Problems of Mathematical Physics, in: International Symposium on Continuum Mechanics and Partial Differential Equations, North-Holland (1978). Zbl0404.35002MR519648
- [15] Medeiros ( L.A.) .— On a new class of nonlinear wave equations, J. Math. Anal. and Appl.69 (1979), pp. 252-262. Zbl0407.35051MR535295
- [16] Medeiros ( L.A.) and Miranda ( M.) .— On a nonlinear wave equations with damping, Revista Matematica de la Universidad Complutense de Madrid3, n° 2 (1990), pp. 213-231. Zbl0721.35044MR1081312
- [17] Menzala ( G.P.) . - On classical solutions of a quasi-linear hyperbolic equations, Nonlinear Anal.3 (1979), pp. 613-627. Zbl0419.35062MR541872
- [18] Menzala ( G.P.) and Zuazua ( E.). .— Explicit exponential decay rates for solutions of von Kármán system of thermoelastic plates, Differential and Integral Equation11 (1998), pp. 755-770. Zbl1008.35077MR1666187
- [19] Nayfeh ( A.) and Mook ( D.T.) .— Nonlinear Oscillations, John Willey (1979). Zbl0418.70001MR549322
- [20] Pohozaev ( S.L.) . — On a class of quasilinear hyperbolic equations, Math. Sb.25 (1975), pp. 145-158. Zbl0328.35060MR369938
- [21] Puel ( J.-P.) and Tucsnak ( M.) .— Boundary stabilization of the von Kármán equations, SIAM J. Control and Opt.33 (1995), pp. 255-273. Zbl0822.73037MR1311669
- [22] Rivera ( P.H.) .- On local strong solutions of a nonlinear partial differential equation, Applicable Analysis10 (1980), pp. 93-104. Zbl0451.35042MR575535
- [23] Strauss ( W.) . — The Energy Method in Nonlinear Partial Differential Equations, IMPA (1969). Zbl0233.35001MR273170
- [24] Strauss ( W.) .— Weak solutions of semilinear hyperbolic equations, Anais da Acad. Bras. Ciências42 n° 4 (1970). Zbl0217.13104MR306715
- [25] Vasconcellos ( C.F.) and Teixeira ( L.M.) . — Strong solution and exponential decay for a nonlinear hyperbolic equation, Applicable Analysis51 (1993), pp. 155-173. Zbl0738.65079MR1278998
- [26] Zuazua ( E.) . — Stability and decay for a class of nonlinear hyperbolic problems, Asymptotic Analysis1 (1988), pp. 141-185. Zbl0677.35069MR950012
- [27] Zuazua ( E.) . - Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J.Control Optim.28, n° 2 (1990), pp. 466-477. Zbl0695.93090MR1040470
- [28] Zuazua ( E.) . - Controlabilidad Exact a y Estabilización de la Ecuación de Ondas, Textos de Métodos Matemáticos23, IM-UFRJ (1992).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.