Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping

Carlos Frederico Vasconcellos; Lucia Maria Teixeira

Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)

  • Volume: 8, Issue: 1, page 173-193
  • ISSN: 0240-2963

How to cite

top

Vasconcellos, Carlos Frederico, and Teixeira, Lucia Maria. "Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.1 (1999): 173-193. <http://eudml.org/doc/73477>.

@article{Vasconcellos1999,
author = {Vasconcellos, Carlos Frederico, Teixeira, Lucia Maria},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {polynomial decay of the energy},
language = {eng},
number = {1},
pages = {173-193},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping},
url = {http://eudml.org/doc/73477},
volume = {8},
year = {1999},
}

TY - JOUR
AU - Vasconcellos, Carlos Frederico
AU - Teixeira, Lucia Maria
TI - Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 1
SP - 173
EP - 193
LA - eng
KW - polynomial decay of the energy
UR - http://eudml.org/doc/73477
ER -

References

top
  1. [1] Bisognin ( E.), Bisognin ( V.), Menzala ( G.P.) and Zuazua ( E.) .- On exponential stability for von Kármán equations in the presence of thermal effects, Math. Methods in the Applied Science21 (1998), pp. 393-416. Zbl0911.35022MR1608076
  2. [2] Dickey ( R.W.) .- Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl.29 (1970), pp. 443-454. Zbl0187.04803MR253617
  3. [3] Eisley ( J.G.) .— Nonlinear vibrations of beams and rectangular plates, Z. Angew Math. Phys.15 (1964), pp. 167-175. Zbl0133.19101MR175375
  4. [4] Haraux ( A.) .- Semilinear Hyperbolic Problems in Bounded Domains, Math. reports3, Part 1, Harwood Academic Publishers, Gordon & Breach (1987). Zbl0875.35054
  5. [5] Horn ( M.A.) .— Nonlinear boundary stabilization of a von Kármán plate equation, Lecture Notes in Pure and Appl. Math.152 (1994), pp. 581-604. Zbl0925.93420MR1243226
  6. [6] Horn ( M.A.) and Lasiecka ( I.) .- Global existence and uniqueness of regular solutions to the dynamic von Kármán system with nonlinear boundary dissipation, Lecture Notes in Pure and Appl. Math.165 (1994), pp. 99-119. Zbl0814.35069MR1299140
  7. [7] Komornik ( V.) .— Exact Controllabilty and Stabilization. The Multiplier Method, RAM, Masson and John Willey (1994). Zbl0937.93003MR1359765
  8. [8] Lagnese ( J.) .- Modelling and stabilization of nonlinear plates, Int. Ser. of Numerical Math.100 (1991), pp. 247-264. Zbl0761.93065MR1155650
  9. [9] Lagnese ( J.) .— Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics. Philadelphia (1989). Zbl0696.73034MR1061153
  10. [10] Lagnese ( J.) and Leugering ( G.) .— Uniform stabilization of a nonlinear beam by nonlinear boundary feedback, J. Diff. Eqs91 (1991), pp. 355-388. Zbl0802.73052MR1111180
  11. [11] Lan ( H.B.), Thanh ( L.T.), Long ( N.T.), Bang ( N.T.), Cuong ( T.L.) and Minh ( T.N.) . — On the nonlinear vibrations equation with a coefficient containing an integral, Comp. Maths Math. Phys.33, n° 9 (1993), pp. 1171-1178. Zbl0816.35089MR1240040
  12. [12] Lasiecka ( I.) .- Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary, J. Diff. Eqs79 (1989), pp. 340-381. Zbl0694.35102MR1000694
  13. [13] Lasiecka ( I.) and Triggiani ( R.) .— Uniform stabilization of the wave equation with Dirichlet feedback control without geometrical conditions, Appl. Math. Optim.25 (1992), pp. 189-224. Zbl0780.93082MR1142681
  14. [14] Lions ( J.-L.) . - On Some Questions in Boundary Value Problems of Mathematical Physics, in: International Symposium on Continuum Mechanics and Partial Differential Equations, North-Holland (1978). Zbl0404.35002MR519648
  15. [15] Medeiros ( L.A.) .— On a new class of nonlinear wave equations, J. Math. Anal. and Appl.69 (1979), pp. 252-262. Zbl0407.35051MR535295
  16. [16] Medeiros ( L.A.) and Miranda ( M.) .— On a nonlinear wave equations with damping, Revista Matematica de la Universidad Complutense de Madrid3, n° 2 (1990), pp. 213-231. Zbl0721.35044MR1081312
  17. [17] Menzala ( G.P.) . - On classical solutions of a quasi-linear hyperbolic equations, Nonlinear Anal.3 (1979), pp. 613-627. Zbl0419.35062MR541872
  18. [18] Menzala ( G.P.) and Zuazua ( E.). .— Explicit exponential decay rates for solutions of von Kármán system of thermoelastic plates, Differential and Integral Equation11 (1998), pp. 755-770. Zbl1008.35077MR1666187
  19. [19] Nayfeh ( A.) and Mook ( D.T.) .— Nonlinear Oscillations, John Willey (1979). Zbl0418.70001MR549322
  20. [20] Pohozaev ( S.L.) . — On a class of quasilinear hyperbolic equations, Math. Sb.25 (1975), pp. 145-158. Zbl0328.35060MR369938
  21. [21] Puel ( J.-P.) and Tucsnak ( M.) .— Boundary stabilization of the von Kármán equations, SIAM J. Control and Opt.33 (1995), pp. 255-273. Zbl0822.73037MR1311669
  22. [22] Rivera ( P.H.) .- On local strong solutions of a nonlinear partial differential equation, Applicable Analysis10 (1980), pp. 93-104. Zbl0451.35042MR575535
  23. [23] Strauss ( W.) . — The Energy Method in Nonlinear Partial Differential Equations, IMPA (1969). Zbl0233.35001MR273170
  24. [24] Strauss ( W.) .— Weak solutions of semilinear hyperbolic equations, Anais da Acad. Bras. Ciências42 n° 4 (1970). Zbl0217.13104MR306715
  25. [25] Vasconcellos ( C.F.) and Teixeira ( L.M.) . — Strong solution and exponential decay for a nonlinear hyperbolic equation, Applicable Analysis51 (1993), pp. 155-173. Zbl0738.65079MR1278998
  26. [26] Zuazua ( E.) . — Stability and decay for a class of nonlinear hyperbolic problems, Asymptotic Analysis1 (1988), pp. 141-185. Zbl0677.35069MR950012
  27. [27] Zuazua ( E.) . - Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J.Control Optim.28, n° 2 (1990), pp. 466-477. Zbl0695.93090MR1040470
  28. [28] Zuazua ( E.) . - Controlabilidad Exact a y Estabilización de la Ecuación de Ondas, Textos de Métodos Matemáticos23, IM-UFRJ (1992). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.