Exact controllability of the wave equation with Neumann boundary condition and time-dependent coefficients

Marcelo Moreira Cavalcanti

Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)

  • Volume: 8, Issue: 1, page 53-89
  • ISSN: 0240-2963

How to cite

top

Moreira Cavalcanti, Marcelo. "Exact controllability of the wave equation with Neumann boundary condition and time-dependent coefficients." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.1 (1999): 53-89. <http://eudml.org/doc/73481>.

@article{MoreiraCavalcanti1999,
author = {Moreira Cavalcanti, Marcelo},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {wave equation; controllability; Neumann boundary conditions; time-dependent coefficients; Hilbert uniqueness method; multiplier techniques; inverse inequality},
language = {eng},
number = {1},
pages = {53-89},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Exact controllability of the wave equation with Neumann boundary condition and time-dependent coefficients},
url = {http://eudml.org/doc/73481},
volume = {8},
year = {1999},
}

TY - JOUR
AU - Moreira Cavalcanti, Marcelo
TI - Exact controllability of the wave equation with Neumann boundary condition and time-dependent coefficients
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 1
SP - 53
EP - 89
LA - eng
KW - wave equation; controllability; Neumann boundary conditions; time-dependent coefficients; Hilbert uniqueness method; multiplier techniques; inverse inequality
UR - http://eudml.org/doc/73481
ER -

References

top
  1. [1] Bardos ( C.) and Cheng ( C.) . — Control and stabilization for the wave equation, part III: domain with moving boundary, SIAM J. Control and Optimization19 (1981), pp. 123-138. Zbl0461.93038MR603085
  2. [2] Bardos ( C.), Lebeau ( G.) and Rauch ( J.) .— Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control and Optimization30, n° 5 (1992), pp. 1024-1065. Zbl0786.93009MR1178650
  3. [3] Cioranescu ( D.), Donato ( P.) and Zuazua ( E.) .— Exact boundary controllability for the wave equation in domains with small holes, J. Math. Pures Appl.71 (1992), pp. 343-357. Zbl0843.35009MR1176016
  4. [4] Coron ( J.-M.) .— Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfais incompressibles bidimensionnels, C.R.A.S.Paris, Série I, 317 (1993), pp. 271-276. Zbl0781.76013MR1233425
  5. [5] Fuentes Apolaya ( R.) .— Exact Controllability for temporally wave equation, Portugaliae Math.51, n° 4 (1994), pp. 475-488. Zbl0828.49008MR1313160
  6. [6] Lagnese ( J.) . — Control of wave processes with distributed controls supported on a subregion, SIAM J. Control and Optimization21 (1983), pp. 68-85. Zbl0512.93014MR688440
  7. [7] Lagnese ( J.) .— Boundary patch control of the wave equation in some non-star complemented regions, J. Math. Anal.77 (1980), pp. 364-380. Zbl0451.93015MR593220
  8. [8] Lagnese ( J.) .— Boundary value control of a class of hyperbolic equations in a general region, SIAM J. Control and Optimization15, n° 6 (1977), pp. 973-983. Zbl0375.93029MR477480
  9. [9] Lagnese ( J.) and Lions ( J.-P.) .- Modelling, Analysis and Exact Controllability of Thin Plates, R.M.A. Collection6, Masson, Paris (1988). Zbl0662.73039MR953313
  10. [10] Lasiecka ( I.) and Triggiani ( R.) . - Exact controllabily for the wave equation with Neumann boundary control, Appl. Math. Optim.19 (1989), pp. 243-290. Zbl0666.49012MR974187
  11. [11] Komornik ( V.) .- Exact controllability in short time for wave equation, Ann. Inst. Henri-Poincaré6 (1989), pp. 153-164. Zbl0672.49025MR991876
  12. [12] Lions ( J.-P.) . - Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1, Masson, Paris (1988). Zbl0653.93002MR953547
  13. [13] Lions ( J.-P.) and Magenes ( E.) .— Problèmes aux limites non homogènes, Applications, Vol. 1, Dunod, Paris (1968). Zbl0165.10801MR247243
  14. [14] Medeiros ( L.A.) . - Exact control for a Timoshenko model of vibrations beams, Adv. Math. Sci. Appl.2 (1993), pp. 47-61. Zbl0860.93014MR1239248
  15. [15] Milla Miranda ( M.) .- Contrôlabilité exacte de l'équation des ondes dans des domaines non cylindriques, C.R.A.S.Paris317 (1993), pp. 495-499. Zbl0784.93045MR1239037
  16. [16] Milla Miranda ( M.) and Medeiros ( L.A.) .- Exact controllability for the Schroedinger equation in non cylindrical domain, C.R.A.S.Paris319 (1994), pp. 685-689. Zbl0809.93026MR1300070
  17. [17] Soriano ( J.A.) .— Controlabilidad exacta de la equación del telégrafo generalizada, Rev. Mat. Univ. Complutense de Madrid8 (1995), pp. 495-493. Zbl0873.93010
  18. [18] Zuazua ( E.) .- Exact controllability for the semilinear wave equation, J. Math. Appl.69 (1990), pp. 1-32. Zbl0638.49017MR1054122

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.