Exact controllability of the wave equation with Neumann boundary condition and time-dependent coefficients
Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)
- Volume: 8, Issue: 1, page 53-89
- ISSN: 0240-2963
Access Full Article
topHow to cite
topMoreira Cavalcanti, Marcelo. "Exact controllability of the wave equation with Neumann boundary condition and time-dependent coefficients." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.1 (1999): 53-89. <http://eudml.org/doc/73481>.
@article{MoreiraCavalcanti1999,
author = {Moreira Cavalcanti, Marcelo},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {wave equation; controllability; Neumann boundary conditions; time-dependent coefficients; Hilbert uniqueness method; multiplier techniques; inverse inequality},
language = {eng},
number = {1},
pages = {53-89},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Exact controllability of the wave equation with Neumann boundary condition and time-dependent coefficients},
url = {http://eudml.org/doc/73481},
volume = {8},
year = {1999},
}
TY - JOUR
AU - Moreira Cavalcanti, Marcelo
TI - Exact controllability of the wave equation with Neumann boundary condition and time-dependent coefficients
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 1
SP - 53
EP - 89
LA - eng
KW - wave equation; controllability; Neumann boundary conditions; time-dependent coefficients; Hilbert uniqueness method; multiplier techniques; inverse inequality
UR - http://eudml.org/doc/73481
ER -
References
top- [1] Bardos ( C.) and Cheng ( C.) . — Control and stabilization for the wave equation, part III: domain with moving boundary, SIAM J. Control and Optimization19 (1981), pp. 123-138. Zbl0461.93038MR603085
- [2] Bardos ( C.), Lebeau ( G.) and Rauch ( J.) .— Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control and Optimization30, n° 5 (1992), pp. 1024-1065. Zbl0786.93009MR1178650
- [3] Cioranescu ( D.), Donato ( P.) and Zuazua ( E.) .— Exact boundary controllability for the wave equation in domains with small holes, J. Math. Pures Appl.71 (1992), pp. 343-357. Zbl0843.35009MR1176016
- [4] Coron ( J.-M.) .— Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfais incompressibles bidimensionnels, C.R.A.S.Paris, Série I, 317 (1993), pp. 271-276. Zbl0781.76013MR1233425
- [5] Fuentes Apolaya ( R.) .— Exact Controllability for temporally wave equation, Portugaliae Math.51, n° 4 (1994), pp. 475-488. Zbl0828.49008MR1313160
- [6] Lagnese ( J.) . — Control of wave processes with distributed controls supported on a subregion, SIAM J. Control and Optimization21 (1983), pp. 68-85. Zbl0512.93014MR688440
- [7] Lagnese ( J.) .— Boundary patch control of the wave equation in some non-star complemented regions, J. Math. Anal.77 (1980), pp. 364-380. Zbl0451.93015MR593220
- [8] Lagnese ( J.) .— Boundary value control of a class of hyperbolic equations in a general region, SIAM J. Control and Optimization15, n° 6 (1977), pp. 973-983. Zbl0375.93029MR477480
- [9] Lagnese ( J.) and Lions ( J.-P.) .- Modelling, Analysis and Exact Controllability of Thin Plates, R.M.A. Collection6, Masson, Paris (1988). Zbl0662.73039MR953313
- [10] Lasiecka ( I.) and Triggiani ( R.) . - Exact controllabily for the wave equation with Neumann boundary control, Appl. Math. Optim.19 (1989), pp. 243-290. Zbl0666.49012MR974187
- [11] Komornik ( V.) .- Exact controllability in short time for wave equation, Ann. Inst. Henri-Poincaré6 (1989), pp. 153-164. Zbl0672.49025MR991876
- [12] Lions ( J.-P.) . - Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1, Masson, Paris (1988). Zbl0653.93002MR953547
- [13] Lions ( J.-P.) and Magenes ( E.) .— Problèmes aux limites non homogènes, Applications, Vol. 1, Dunod, Paris (1968). Zbl0165.10801MR247243
- [14] Medeiros ( L.A.) . - Exact control for a Timoshenko model of vibrations beams, Adv. Math. Sci. Appl.2 (1993), pp. 47-61. Zbl0860.93014MR1239248
- [15] Milla Miranda ( M.) .- Contrôlabilité exacte de l'équation des ondes dans des domaines non cylindriques, C.R.A.S.Paris317 (1993), pp. 495-499. Zbl0784.93045MR1239037
- [16] Milla Miranda ( M.) and Medeiros ( L.A.) .- Exact controllability for the Schroedinger equation in non cylindrical domain, C.R.A.S.Paris319 (1994), pp. 685-689. Zbl0809.93026MR1300070
- [17] Soriano ( J.A.) .— Controlabilidad exacta de la equación del telégrafo generalizada, Rev. Mat. Univ. Complutense de Madrid8 (1995), pp. 495-493. Zbl0873.93010
- [18] Zuazua ( E.) .- Exact controllability for the semilinear wave equation, J. Math. Appl.69 (1990), pp. 1-32. Zbl0638.49017MR1054122
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.