Global smooth solutions of some quasi-linear hyperbolic systems with large data

F. Poupaud

Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)

  • Volume: 8, Issue: 4, page 649-659
  • ISSN: 0240-2963

How to cite

top

Poupaud, F.. "Global smooth solutions of some quasi-linear hyperbolic systems with large data." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.4 (1999): 649-659. <http://eudml.org/doc/73502>.

@article{Poupaud1999,
author = {Poupaud, F.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {matrix-valued Riccati equation; Hamilton-Jacobi equations},
language = {eng},
number = {4},
pages = {649-659},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Global smooth solutions of some quasi-linear hyperbolic systems with large data},
url = {http://eudml.org/doc/73502},
volume = {8},
year = {1999},
}

TY - JOUR
AU - Poupaud, F.
TI - Global smooth solutions of some quasi-linear hyperbolic systems with large data
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 4
SP - 649
EP - 659
LA - eng
KW - matrix-valued Riccati equation; Hamilton-Jacobi equations
UR - http://eudml.org/doc/73502
ER -

References

top
  1. [1] Bouchut ( F.). - On zero pressure gas dynamics. Series on Advances in Mathematics for Applied Sciences, Kinetic Theory and Computing, B. Perthame edt, 22, 1994. Zbl0863.76068MR1323183
  2. [2] Bouchut ( F.) and James ( F.). - Equations de transport unidimensionnelles à coefficients discontinus. C.R.A.S. Série 1, 320:1097-1102, 1995 and - One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. TMA, 32: 891-933, 1998. Zbl0989.35130
  3. [3] Brenier ( Y.) and Grenier ( E.). - Sticky particles and scalar conservation laws. SIAM J. Numer. Anal., 35, no. 6:2317-2328, 1998. Zbl0924.35080MR1655848
  4. [4] Diperna ( R.J.). - Compensated compactness and general systems of conservation laws. Trans. Amer. Math. Soc., 292:383-420, 1985. Zbl0606.35052MR808729
  5. [5] Glimm ( J.). - Solutions in the large for nonlinear hyperbolic systems of equations. Com. Pure Appl. Math., 18:698-715, 1965. Zbl0141.28902MR194770
  6. [6] Goudon ( T.) and Junca ( S.). - Vanishing pressure in gas dynamics equations. ZAMP, 51, no 1: 143-148, 2000. Zbl0970.35117MR1745295
  7. [7] Grassin ( M.) and Serre ( D.). - Existence de solutions globales et régulières aux équations d'Euler pour un gaz parfait isentropique. C. R. Acad. Sci.Paris Sér. I Math., 325(7):721-726, 1997 and Grassin ( M.). - Global smooth solutions to Euler equation for a perfect gas. Indian Univ. Math. J., 47, no 4: 1397-1432, 1998. Zbl0887.35125MR1483706
  8. [8] Grenier ( E.). - Existence globale pour le système des gaz sans pression. C.R.A.S. Série 1, 321:171-174, 1995. Zbl0837.35088MR1345441
  9. [9] Hörmander ( L.). - Lectures on Nonlinear Hyperbolic Differential Equations,volume 26 of Mathématiques et Applications. Springer, 1997. Zbl0881.35001MR1466700
  10. [10] Lax ( P.D.). - Hyperbolic systems of conservation laws and the mathematical theory of shock waves. In Regional Conf. in Appl. Math., volume 11, pages 1-48, Philadelphia, 1973. Zbl0268.35062MR350216
  11. [11] Lions ( P.-L.). - Generalized solutions of Hamilton-Jacobi equations. Pitman, Boston, 1982. Zbl0497.35001MR667669
  12. [12] Poupaud ( F.) and Rascle ( M.). - Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Comm. in PDE, 22:337-358, 1997. Zbl0882.35026MR1434148
  13. [13] Serre ( D.). - Système de lois de conservation I et II. Diderot, Paris, New York, Amsterdam, 1996. Zbl0930.35002
  14. [14] Zeldovich ( Ya B.). - Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys., 5:84, 1970. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.