Description topologique des représentations de U q ( s l 2 )

Henrik Thys

Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)

  • Volume: 8, Issue: 4, page 695-725
  • ISSN: 0240-2963

How to cite

top

Thys, Henrik. "Description topologique des représentations de $U_q(sl_2)$." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.4 (1999): 695-725. <http://eudml.org/doc/73505>.

@article{Thys1999,
author = {Thys, Henrik},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {ribbon categories; Temperley-Lieb category},
language = {fre},
number = {4},
pages = {695-725},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Description topologique des représentations de $U_q(sl_2)$},
url = {http://eudml.org/doc/73505},
volume = {8},
year = {1999},
}

TY - JOUR
AU - Thys, Henrik
TI - Description topologique des représentations de $U_q(sl_2)$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 4
SP - 695
EP - 725
LA - fre
KW - ribbon categories; Temperley-Lieb category
UR - http://eudml.org/doc/73505
ER -

References

top
  1. [1] Andersen ( H.H.). - Tensor products of quantized tilting modules, Comm. Math. Phys., 149 (1) (1992), pp. 149-159. Zbl0760.17004MR1182414
  2. [2] Andersen ( H.H.) and Paradowski ( J.). - Fusion categories arising from semisimple Lie algebras, Comm. Math. Phys., 169 (3) (1995), pp. 563-588. Zbl0827.17010MR1328736
  3. [3] Chari ( V.) and Pressley ( A.). - A guide to quantum groups. Cambridge University Press, Cambridge, 1994. Zbl0839.17009MR1300632
  4. [4] De Concini ( C.) and Kac ( V.G.). - Representations of quantum groups at roots of 1. In Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), pp. 471-506, Birkhäuser Boston, Boston, MA, 1990. Zbl0738.17008MR1103601
  5. [5] Goodman ( F.M.) and De La Harpe ( P.) and Jones ( V.F.R.). - Coxeter graphs and towers of algebras. Springer-Verlag, New York, 1989. Zbl0698.46050MR999799
  6. [6] Jantzen ( J.C.). - Lectures on quantum groups. American Mathematical Society, Providence, RI, 1996. Zbl0842.17012MR1359532
  7. [7] Jones ( V.F.R.). - Index for subfactors. Invent. Math., 72 (1) (1983), pp. 1-25. Zbl0508.46040MR696688
  8. [8] Jones ( V.F.R.). - Hecke algebra representations of braid groups and link polynomials. Ann. of Math. (2), 126 (2) (1987), pp. 335-388. Zbl0631.57005MR908150
  9. [9] Kassel ( C.). — Quantum groups. Graduated Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. Zbl0808.17003MR1321145
  10. [10] Kassel ( C.), Rosso ( M.) and Turaev ( V.). - Quantum groups and knot invariants. Panoramas et Synthèses, vol. 5, Société Mathématique de France. Paris, 1997. Zbl0878.17013MR1470954
  11. [11] Kauffman ( L.H.). - Knots and physics. World Scientific Publishing Co. Inc., River Edge, NJ, second edition, 1993. Zbl0868.57001MR1306280
  12. [12] Kazhdan ( V.) and Wenzl ( H.). - Reconstructing monoidal categories, In I. M. Gel'fand Seminar, pp. 111-136, Amer. Math. Soc., Providence, RI, 1993. Zbl0786.18002MR1237835
  13. [13] Kerler ( T.). - Quantum groups, quantum categories and quantum field theory. Dissertation, ETH, Zürich, 1992. 
  14. [14] Kirby ( R.) and Melvin ( P.). — The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl2(C). Invent. Math., 105 (3) (1991), pp. 473-545. Zbl0745.57006MR1117149
  15. [15] Lickorish ( W.B.R.). - Three-manifolds and the Temperley-Lieb algebra. Math. Ann., 290 (4) (1991), pp. 657-670. Zbl0739.57004MR1119944
  16. [16] Lickorish ( W.B.R.). - Calculations with the Temperley-Lieb algebra. Comment. Math. Helv., 67 (4) (1992), pp. 571-591. Zbl0779.57008MR1185809
  17. [17] Lusztig ( G.). - Quantum deformations of certain simple modules over enveloping algebras. Adv. in Math., 70 (2) (1988), pp. 237-249. Zbl0651.17007MR954661
  18. [18] Maclane ( D.). - Categories for the working mathematician. Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1971. Zbl0232.18001MR354798
  19. [19] Morton ( H.R.). - Invariants of links and 3-manifolds from skein theory and from quantum groups. In Topics in knot theory (Erzurum, 1992), pp. 107-155, Kluwer Acad. Publ., Dordrecht, 1993. Zbl0816.57003MR1257908
  20. [20] Reshetikhin ( N.) and Turaev ( V.G.). - Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math., 103 (3) (1991), pp. 547-597. Zbl0725.57007MR1091619
  21. [21] Rosso ( M.). - Finite-dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra. Comm. Math. Phys., 117 (4) (1988), pp. 581-593. Zbl0651.17008MR953821
  22. [22] Temperley ( H.N.V.) and Lieb ( E.H.). - Relations between the "percolation" and "colouring" problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the "percolation" problem. Proc. Roy. Soc. London Ser. A, 322 (1549) (1971), pp. 251-280. Zbl0211.56703MR498284
  23. [23] Turaev ( V.G.). - Operator invariants of tangles and R-matrices. Izv. Akad. Nauk SSSR Ser. Mat., 53 (5) (1989), pp. 1073-1107. Traduit dans Math. USSR-Izv.35 (1990), pp. 441-444. Zbl0707.57003MR1024455
  24. [24] Turaev ( V.G.). - Quantum invariants of knots and 3-manifolds. W. de Gruyter & Co., Berlin, 1994. Zbl0812.57003
  25. [25] Wenzl ( H.). - On sequences of projections. C. R. Math. Rep. Acad. Sci. Canada, 9 (1) (1987), pp. 5-9. Zbl0622.47019MR873400

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.