Théorème de Brownawell-Waldschmidt en caractéristique finie

Sophie Dion

Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)

  • Volume: 9, Issue: 1, page 71-90
  • ISSN: 0240-2963

How to cite

top

Dion, Sophie. "Théorème de Brownawell-Waldschmidt en caractéristique finie." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.1 (2000): 71-90. <http://eudml.org/doc/73513>.

@article{Dion2000,
author = {Dion, Sophie},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Schneider's Eighth problem; Drinfeld module; finite characteristic},
language = {fre},
number = {1},
pages = {71-90},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Théorème de Brownawell-Waldschmidt en caractéristique finie},
url = {http://eudml.org/doc/73513},
volume = {9},
year = {2000},
}

TY - JOUR
AU - Dion, Sophie
TI - Théorème de Brownawell-Waldschmidt en caractéristique finie
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 1
SP - 71
EP - 90
LA - fre
KW - Schneider's Eighth problem; Drinfeld module; finite characteristic
UR - http://eudml.org/doc/73513
ER -

References

top
  1. [1] Bosser ( V.). — Minoration de formes linéaires de logarithmes pour les modules de Drinfeld, J. Number Theory75 (1999), 279-323. Zbl0922.11062MR1681633
  2. [2] BOSCH-GÜNTZER-REMMERT. — Non Archimedean Analysis, Springer (1984). Zbl0539.14017MR746961
  3. [3] Brownawell ( W.D.). — The algebraic independence of certain numbers related by the exponential function, J. Number Theory6 (1974), 22-31. Zbl0275.10020MR337804
  4. [4] Denis ( L.). — Théorème de Baker et modules de Drinfeld, J. Number Theory43 (1993), 203-215. Zbl0767.11029MR1207500
  5. [5] Denis ( L.). - Indépendance algébrique et exponentielle de Carlitz, Acta Arith.LXIX.1 (1995), 75-89. Zbl0823.11032MR1310843
  6. [6] Denis ( L.). — Lemmes de multiplicités et T-modules, Michigan Journal of Math43 (1996),n° 1, 67-79. Zbl0853.11050MR1381600
  7. [7] Denis ( L.). - Indépendance algébrique en caractéristique 2, J. Number Theory66 (1997), 183-200. Zbl0958.11050MR1467196
  8. [8] Thiery ( A.). — Indépendance algébrique de périodes et quasi-périodes de modules de Drinfeld, The Arithmetic of Functions Fields, Proceedings, Workshop at Ohio State University (1992), 265-284. Zbl0798.11021MR1196524
  9. [9] Thiery ( A.). - Théorème de Lindemann-Weierstrass pour les modules de Drinfeld, Compositio Mathematica95 (1995), 1-42. Zbl0839.11025MR1314695
  10. [10] Tubbs ( R.). — Algebraic groups and small transcendence degree, I, J. Number Theory25 (1987), 279-307. Zbl0608.10036MR880463
  11. [11] Tubbs ( R.). — Algebraic groups and small transcendence degree, II, J. Number Theory35 (1990), 109-127. Zbl0712.11039MR1057317
  12. [12] Waldschmidt ( M.). - Solution du huitième problème de Schneider, J. Number Theory5 (1973), 191-202. Zbl0262.10021MR321884
  13. [13] Yu ( J.). - Transcendence Theory over function fields, Duke Math. J.52 (1985), 517-527. Zbl0574.12015MR792186
  14. [14] Yu ( J.). — Analytic homomorphisms into Drinfeld Modules, Ann. of Math.145 (1997), 215-233. Zbl0881.11055MR1441876

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.