Attracteurs compacts pour des problèmes d'évolution sans unicité

A. Ould Elmounir; F. Simondon

Annales de la Faculté des sciences de Toulouse : Mathématiques (2000)

  • Volume: 9, Issue: 4, page 631-654
  • ISSN: 0240-2963

How to cite

top

Ould Elmounir, A., and Simondon, F.. "Attracteurs compacts pour des problèmes d'évolution sans unicité." Annales de la Faculté des sciences de Toulouse : Mathématiques 9.4 (2000): 631-654. <http://eudml.org/doc/73530>.

@article{OuldElmounir2000,
author = {Ould Elmounir, A., Simondon, F.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {generalized dynamical systems on a complete metric space; ill-posed problems},
language = {fre},
number = {4},
pages = {631-654},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Attracteurs compacts pour des problèmes d'évolution sans unicité},
url = {http://eudml.org/doc/73530},
volume = {9},
year = {2000},
}

TY - JOUR
AU - Ould Elmounir, A.
AU - Simondon, F.
TI - Attracteurs compacts pour des problèmes d'évolution sans unicité
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2000
PB - UNIVERSITE PAUL SABATIER
VL - 9
IS - 4
SP - 631
EP - 654
LA - fre
KW - generalized dynamical systems on a complete metric space; ill-posed problems
UR - http://eudml.org/doc/73530
ER -

References

top
  1. [1] Aguirre ( J.), Escobedo ( M.). — A Cauchy problem for ut = Δu - up with 0 &lt; p &lt; 1. Asymptotic behaviour solutions, Ann. Fac. Toulouse, Vol VIII, n° 2, (1987), p. 1986-1987. Zbl0601.35051
  2. [2] Alt ( H.W.), Luckhaus ( S.). — Quasilinear Elliptic-parabolic differential equations, Math2, 183, (1983), p. 311-341. Zbl0497.35049MR706391
  3. [3] Andreu ( F.), Mazon ( J.M.), Simondon ( F.), Toledo ( J.). — Global existence for a degenerate nonlinear diffusion problem with nonlinear gradient term and source, Mathematische Annalen, 314, (1999), p. 703-728. Zbl0926.35068MR1709107
  4. [4] Ball ( J.M.). — On the asymptotic behavior of generalized process with applications to Nonlinear evolution equations, J. Differential Equations, 27, (1978), p. 224-265. Zbl0376.35002MR461576
  5. [5] Chepyzhov ( V.V.), Vishik ( M.I.). — Trajectory attractors for evolution equations, C.R. Acad. Sci.Paris, 321, (1995), p. 1309-1314. Zbl0843.35038MR1363570
  6. [6] Chepyzhov ( V.V.), Vishik ( M.I.). - Evolution equations and their trajectory attractors, J. math. pures et appl., 76, (1997), p. 913-964. Zbl0896.35032MR1489945
  7. [7] Crandall ( M.G.), Ishi ( H.), Lions ( P.L.). — User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1), (1992), p. 1-67. Zbl0755.35015MR1118699
  8. [8] Dibenedetto. — Continuity of weak solutions to a general porous medium equation, Indiana Univ. Math. J.32, (1983), p. 88-118. Zbl0526.35042MR684758
  9. [9] Dal Passo ( R.), Luckhaus ( S.). — A degenerate problem not in divergence form, J. D. E., 69, (1987), p. 1-14. Zbl0688.35045MR897437
  10. [10] Haraux ( A.). — Systèmes dynamiques dissipatifs et applications, RMA17, Masson, Paris (1991). Zbl0726.58001MR1084372
  11. [11] Laurençot ( Ph.). - Etude de quelques problèmes aux derivées partielles non linéaires, Thèse de l'Université de Franche-Comté; Besançon (1993). 
  12. [12] Ladyzenskaya ( O.A.), Solonnikov ( V.L.), Uraltseva ( N.N.). — Linear and quasilinear equations of parabolic type. Trans. of Math. Monographs23, AMS (1968). Zbl0174.15403
  13. [13] MEL'NIK ( V.S.). — Multivalued semiflows and their attractors, Dokladi Mathematics, Vol. 52, No 1, (1995), p. 36-39. Zbl0922.54035MR1354500
  14. [14] De Pablo ( A.), Vazquez ( J.L.). - Travelling waves and Finite propagation in a reaction-diffusion equation, JDE, 93 (1991), p. 19-61. Zbl0784.35045MR1122305
  15. [15] Temam ( R.). — Infinite-dimensional dynamical systems in mechanics and physique, Appl. Math. Sc.68, Springer-Verlag, New York, 1988. Zbl0662.35001MR953967

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.